Continuous Functions

Continuity

Given a function f and a number a, we now consider both:

1. the limit of f as x approaches a

$$\lim_{x \to a} f(x)$$

2. and the value of the function f at x = a.

Continuous

A function f is **continuous at a number** a if

$$\lim_{x \to a} f(x) = f(a)$$

otherwise f is **discontinuous at** a.

Comment

Example 1.

Find the numbers where f is discontinuous.

Example 2.

Where are each of the following functions discontinuous?

1.
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

2.
$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

3.
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

4.
$$f(x) = \begin{cases} x^2 + 1 & \text{if } x < 0 \\ x^2 & \text{if } x > 0 \end{cases}$$

Continuity on an Interval

One-Sided Continuity

A function f is

continuous from the right at a number a if $\lim_{x\to a^+} f(x) = f(a)$

continuous from the left at a number a if $\lim_{x\to a^-} f(x) = f(a)$

Example 3.

Further discuss the continuity at x = 2 and x = 5.

Continuous on an Interval

A function f is **continuous on an interval** if it is continuous at every number in the interval.

Example 4

Show that the function $f(x) = 1 - \sqrt{1 - x^2}$ is continuous on the interval [-1, 1]

Continuity and Combinations of Functions

Theorem

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

- 1. f + g
- 2. f g
- 3. *cf*
- 4. fg
- 5. $\frac{f}{g}$ if $g(a) \neq 0$

heorem

The following types of functions are continuous at every number in their domains:

3 71	v	
Polynomial		
D. (1. 1.D. (1.		
Rational Functions		
Root Functions	even root	
	odd root	
Trigonometric Functions	$\sin x$	
	$\cos x$	
	$\tan x$	
Inverse Trigonometric Functions	$\arcsin x$	
	$\arccos x$	
	$\arctan x$	
Exponential Functions		
Logarithmic Functions		

Continuity generalizes the **Direct Substitution Method** of evaluating limits that we used with polynomials and rational functions.

Generalized Direct Substitution Method

If a function f is continuous at a then

$$\lim_{x \to a} f(x) = f(a)$$

Example 5a.

Where is the function
$$f(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
 continuous?

Example 5b. (Use Continuity to Evaluate a Limit)

Evaluate
$$\lim_{x\to 1} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

Example 6a.

Where is the function
$$f(x) = \frac{\ln x + \arctan x}{x^2 - 1}$$
 continuous?

Example 6b. (Use Continuity to Evaluate a Limit)

Evaluate
$$\lim_{x \to e} \frac{\ln x + \arctan x}{x^2 - 1}$$

Continuity and Composite Functions

Composition of Functions

Given two functions f and g, the **composite function** $f \circ g$ is defined by

$$(f \circ g)(x) = f(g(x))$$

Example 7.

If $f(x) = x^2$ and g(x) = x - 3, find the composite functions $f \circ g$ and $g \circ f$.

Theorem - Outer Function is Continuous

If f is continuous at b and $\lim_{x\to a}g(x)=b$, then $\lim_{x\to a}f\left(g(x)\right)=f(b)$. In other words,

$$\lim_{x\to a} f\left(g(x)\right) = f(\lim_{x\to a} g(x)).$$

Example 8.

Evaluate
$$\lim_{x \to 1} \arcsin\left(\frac{1 - \sqrt{x}}{1 - x}\right)$$
.

Theorem - Both Functions Continuous

If g is continuous at a and f is continuous at g(a) then the composite function $f \circ g$ is continuous at a.

Example 9a.

Where are the following functions continuous?

- 1. $h(x) = \sin(x^2 + 3x + \pi/2)$
- 2. $F(x) = \ln(1 + \cos x)$

Example 9b. (Use Continuity to Evaluate a Limit)

Evaluate $\lim_{x\to 0} h(x)$ and $\lim_{x\to 0} F(x)$