The Precise Definition of a Limit

How Can We Measure the Closeness of Two Numbers?

Recall the intuitive definition of the limit of a function....

Limit of a Function (Intuitive Definition) Suppose f(x) is defined when x is near a. If we can make the values of f(x) as close to L as we want by taking x sufficiently close to a but not equal to aThen we write $\lim_{x \to a} f(x) = L$

Example 1.

Using the intuitive definition of a limit we conclude that

$$\lim_{x \to 3} (4x - 5) = 7$$

1. How close to 3 does x have to be so that 4x - 5 differs from 7 by less than 0.5?

2. How close to 3 does x have to be so that 4x - 5 differs from 7 by less than 0.1?

3. Use a graph to find a number δ such that

NOTE: For the following definition we will assume that f is a function defined on some open interval that contains the number a, except possibly at a itself.

Limits

Definition of Limit
The limit of $f(x)$ as x approaches a is L and we write
$\lim_{x \to a} f(x) = L$
If for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that
if $0 < x - a < \delta$ then $ f(x) - L < \varepsilon$

Comparison with the Intuitive Definition:

Arrow Diagram Representation:

Graph Representation:

Example 2.

Use a graph to find a number δ such that

$$\left| (x^3 - 5x + 6) - 2 \right| < 0.5$$

The last example is meant to show us that the limit of the function is most likely 2 but it does not *prove* that this is the limit. This argument needs to work for any ε not just 0.5. The next example shows how an actual mathematical proof proceeds.

Example 3.

Prove that $\lim_{x \to 3} (4x - 5) = 7$.

Example 4.

Prove that $\lim_{x \to 3} f(x) = 5$ where

$$f(x) = \begin{cases} 2x - 1 & \text{if } x \neq 3\\ 6 & \text{if } x = 3 \end{cases}$$

Usually proving the limit of a function directly is difficult which is why the Limit Laws can be very helpful. We can prove all of the Limit Laws using the limit definition. Recall the Sum Law:

Sum Law

If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$ then

$$\lim_{x \to a} \left[f(x) + g(x) \right] = L + M$$

One-Sided Limits

Definition of Left-Hand Limit

$$\lim_{x \to a^-} f(x) = L$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

if
$$a - \delta < x < a$$
 then $|f(x) - L| < \varepsilon$

Definition of Right-Hand Limit	
$\lim_{x \to a^+} f(x) = L$	
if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that	
if $a < x < a + \delta$ then $ f(x) - L < \varepsilon$	

Example 5.

Prove that $\lim_{x \to 0^+} \sqrt{x} = 0.$