Thu	Jan 23	Lecture 1	What? Why? Example. Slope field. Analytical approach.	
Fri	Jan 24	Lab 1	Python and UBx	
Tue	Jan 28	Lecture 2	Solutions by guessing. Separable DE. Exponential growth and decay.	
Wed	Jan 29	Homework 1 due	Intro to Ubx and Jupyter.	
Thu	Jan 30	Lecture 3	Linear DE Mixing problem Matching DE with slopefield	
Fri	Jan 31	Lah 2	Plotting slope fields and using them to solve IVPs	
Tuo	Eab 4	Lecture 4		
Wed	Feb 5	LCOULIC 4	Existence and uniqueness, indimencal solution. Euler's metriod.	
Thu	Teb 0	Loofuro E		
Thu	Feb 6	Lecture 5	Euler's memody, conto. Qualitative approach: togistic example. Priase line.	
Fri	Feb /	Lab 3	Euler's method to solve an IVP (step haiving for accuracy assessment)	
Tue	Feb 11	Lecture 6	Ch 2. Higher Order DE. 2 ^{no} order linear homogeneous DE, E/U, general solution.	
Wed	Feb 12			
Thu	Feb 13	Lecture 7	Second solution by reduction of order. Constant coefficients: 3 cases.	
Fri	Feb 14	Lab 4	Phase line: a model of a harvested fish population	
Tue	Feb 18	Lecture 8	2.4 Mechanical vibrations: frying pan, pendulum.	
Wed	Feb 19			
Thu	Feb 20	Lecture 9	Damped unforced oscillator. Non-homogeneous eqn: particular and general solution.	
Fri	Feb 21	Lab 5	The most comfortable shock	
Tue	Feb 25	Lecture 10	2.6 Forced oscillation and resonance.	
Wed	Feb 26			
Thu	Feb 27	Lecture 11	Ch 3. Systems of DE Example: rabbits and foxes. Simpler example: guess/verify solution	
Fri	Feb 28	Lab 6	The phase plane	
Tue	Mar 4	EXAM 1	Coverage Chapters 0.1.2 (excluding skipped sections)	
Wed	Mar 5			
Thu	Mar 6	Lecture 13	2.1.4 Automotie 1 st order systems, vector field. Euler's method. Linear constant coefficient. Matrix-vector multiplication, linear algebraic systems	
Fri	Mar 7	Leoture ro	5.1.4 Autonous Forder systems, vector new, Euler's method. Emear constant coefficient, Matrix-vector multiplication, intear algebraic systems.	
Tue	Mor 11	Looturo 14	Come appaid matrices. Determinant, Conservation of linear 1# order sustem	
Tue	Mar 12	Lecture 14	Some special matrices. Determinant, General solution of linear 1* order system.	
vved	Mar 12	La strong AP		
Thu	Mar 13	Lecture 15	Eigenvectors and eigenvalues. Nodal sinks and sources.	
Fri	Mar 14		FIRST PROJECT DUE	
Tue	Mar 18			
vved	Mar 19		SPRING RECESS	
I nu	Mar 20			
Fri	Mar 21			
lue	Mar 25	Lecture 16	Saddles. Spiral sinks and sources. Boundary cases: centers Jacob and Emily; double eigenvalue.	
Wed	Mar 26			
Thu	Mar 27	Lecture 17	Ch 8: Nonlinear 1 st order systems, nullclines, phase portrait. Competing species example.	
Fri	Mar 28	Lab	The TD diagram	
Tue	Apr 1	Lecture 18	Recap TD diagram. Linearization at equilibria. Application to competing species.	
Wed	Apr 2			
Thu	Apr 3	Lecture 19	More examples of linearization: conclusive and inconclusive. Power series solution: 2 big ideas.	
Fri	Apr 4	Lab	Phase plane: skyscraper dynamics	
Tue	Apr 8	Lecture 20	Taylor polynomials: convergence, radius of convergence.	
Wed	Apr 9			
Thu	Apr 10	EXAM 2	Coverage Chapters 3, 8.	
Fri	Apr 11	Lab	Euler's method for systems (crucial for 2 nd Project)	
Tue	Apr 15	Lecture 22	Series solution of Airy's equation. DE with a singular point.	
Wed	Apr 16			
Thu	Apr 17	Lecture 23	Further examples of series solution at singular point. Ressel's equation	
Fri	Apr 18	Lab	Taylor series of a given function and of solution of given DE	
Tue	Apr 22	Lecture 24	Ch 6 Lanlare transform: 8 examples	
Wed	Apr 23		on o. Lapidoc administrative o cumpico.	
Thu	Apr 24	Lecture 25		
Fri	Apr 24	Lecture 20	Laprace (dissolini to solve DE IVF.	
T	Api 23	Lau	Representing unicuons with jumps using freevisitor function	
lue	Apr 29	Lecture 26	2 more Laplace transform rules. Example applications.	
Wed	Apr 30			
Thu	May 1	Lecture 27	[[space for schedule slippage]	
Fri	May 2		SECOND PROJECT DUE	
Tue	May 6	Lecture 28	Review	
Wed	May 7			