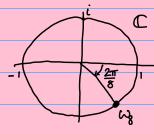
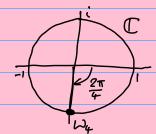
Day 18

- 1. The Fast Fourier Transform (FFT). Cooley & Tukey 1965
- 2. Evaluating and estimating derivatives.

We want to form $F_n y$ where $[F_n]_{jk} = \omega_n^{jk}$ where $\omega_n = e^{-i2\pi i}$

Examples of ω_n :





Explicitly :.. k

$$F_{n} = \begin{bmatrix} \omega_{n}^{0} & \omega_{n}^{0} & \omega_{n}^{0} & \omega_{n}^{0} & \omega_{n}^{0} & \dots \\ \omega_{n}^{0} & \omega_{n}^{1} & \omega_{n}^{2} & \omega_{n}^{3} & \dots \\ \omega_{n}^{0} & \omega_{n}^{2} & \omega_{n}^{4} & \omega_{n}^{6} & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{bmatrix}$$

or in shorthand, just writing the powers of w. ...

For a complete concrete example, here is F_8, writing the powers of w_8:

```
[[ 0 0 0 0 0 0 0 0 0 0]
[ 0 1 2 3 4 5 6 7]
[ 0 2 4 6 8 10 12 14]
[ 0 3 6 9 12 15 18 21]
[ 0 4 8 12 16 20 24 28]
[ 0 5 10 15 20 25 30 35]
[ 0 6 12 18 24 30 36 42]
[ 0 7 14 21 28 35 42 49]]
```

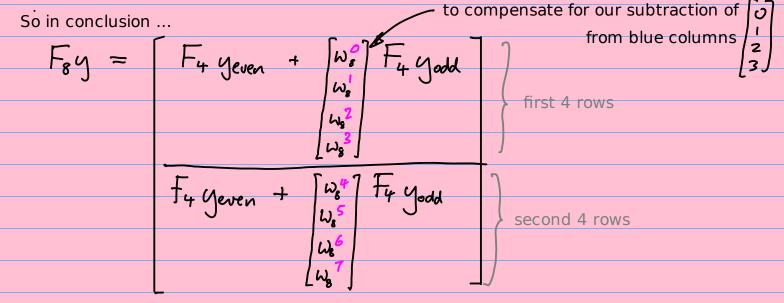
We want to exploit the symmetries of this

To reveal the symmetries, begin by dividing the odd-index (blue) columns by the k=1 column. Dividing means subtracting powers of w:

[[0	0	0	0	0	0	0	0]
[0	0	2	2	4	4	6	6]
[0	0	4	4	8	8	12	12]
[0	0	6	6	12	12	18	18]
[0	0	8	8	16	16	24	24]
[0	0	10	10	20	20	<mark>30</mark>	30]
[0	0	<mark>12</mark>	12	<mark>24</mark>	24	<mark>36</mark>	36]
[0	0	<mark>14</mark>	14	28	28	42	42]]

We see duplication of values, which is the key to fast evaluation of F_ny.

Now let's mod by n=8, which doesn't change anything because $\omega_8^8 = e^{i2\pi \frac{9}{8}} = e^{i2\pi}$. [[0 2 0 4 0 6 0 0 0 2 0 4 2 4 4 6 4 0 0 4 6 4 4 2 0 0 0 0 2 4 4 6 4 0 0 4 6] [[[[0 0 Wow! The upper and lower halves of 0 2] both the even and odd columns are all the same! 0 0] 0 6] 4] 2]] 0 0 0]] All 4 submatrices are in fact] 0 2]] 0 0 0 0 0 2 4 6 0 4 0 4 0 6 4 2 Now observe that the shorthand for F₄, writing powers of N₄ is 0 0 0 Note this is half of the submatrices above. 0 0 0 0 0 1 2 3 0 2 0 2 Now since $N_{+} = \omega_8^2$ we see that each of the four submatrices 0 2 4 6 0 3 2 1 above are in fact F₄! 0 3 6 9



Thus we can express F₂ y in terms of F₄ applied to subvectors of y

In turn, we can express F_{ϵ} in terms of F_{ϵ} , and so on

until we get to F and F is trivial: F = [1].

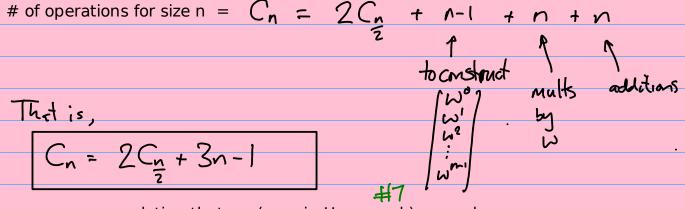
Let's code it up!

FFT

```
import numpy as np
def myfft(y):
    # I'll use recursion - not the most run-time efficient way
    # but makes the coding very simple!
   n = len(y)
   if n==1: return np.array(y,dtype=complex)
   yeven = y[::2]
   yodd = y[1::2]
   w = np.exp(-2j*np.pi/n)
   W = w**np.arange(n) # powers of w 0 thru n-1
    Fyeven = myfft(yeven)
   Fyodd = myfft(yodd)
    return np.hstack([ Fyeven + W[:n//2]*Fyodd, Fyeven + W[n//2:]*Fyodd ])
np.arange(5)
array([0, 1, 2, 3, 4])
# Let's test it!
n = 2**15
print(n)
y = np.random.rand(n)
from time import time
tic = time()
myFy = myfft(y)
toc = time()
print((toc-tic), 'seconds for my version')
from numpy.fft import fft
tic = time()
npFy = fft(y) # numpy's version
toc = time()
print((toc-tic),'seconds for numpy version')
np.allclose(myFy,npFy)
32768
0.2265925407409668 seconds for my version
0.00058746337890625 seconds for numpy version
True
                                         (because I'm using recursion
myfft is correct but 450 times slower than numpy's fft
                                         which has a high overhead)
```

Recall that the cost of a brute force formation of the matrix F_n and multiplying it on y is $O(n^2)$. (Matrix-vector multiplication needs n elements each requiring 2n operations.)

But exploiting the observations above, can do it with the following cost.

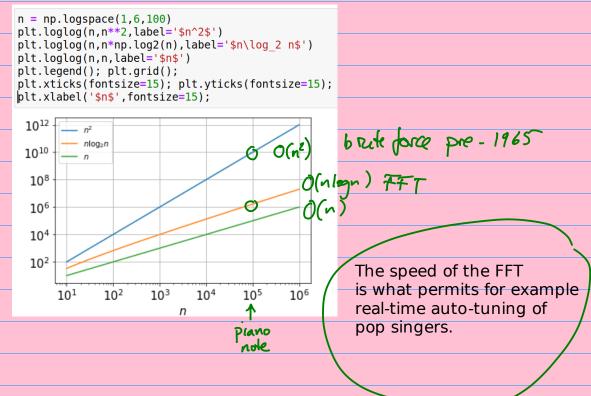


a recurrence relation that we (you, in Homework) can solve.

The conclusion will be that

$$C_n = O(n \log_2 n)$$
 [wow]

which is "almost linear" in n. So much faster than O(R).



6.1 Computing derivatives

What is $f(x_{\bullet})$, where f is some given function and x_{\bullet} is an arbitrary point in its domain?

3 methods available:

- symbolic
- interpolation-based (finite-differences, spectral)
- "automatic differentiation" (AD)

symbolic

If we have a formula for f, this is possible.

Pros: exact (in exact arithmetic), and very close (\mathcal{E}_{mack}) in machine arithmetic.

Cons: inefficient due to sub-expression repetition.

Let's look at an example using sympy ...

```
Symbolic differentiation
import sympy as sp
x = sp.symbols('x')
y = 3*x + sp.sin(7*x**2/(1+x))
3x + \sin\left(\frac{7x^2}{x+1}\right)
yp = sp.diff(y,x)
yp
\left(-\frac{7x^2}{(x+1)^2} + \frac{14x}{x+1}\right)\cos\left(\frac{7x^2}{x+1}\right) + 3
ypp = sp.diff(y,x,x)
7\left(-\frac{7x^{2}\left(\frac{x}{x+1}-2\right)^{2}\sin\left(\frac{7x^{2}}{x+1}\right)}{x+1}+2\left(\frac{x^{2}}{(x+1)^{2}}-\frac{2x}{x+1}+1\right)\cos\left(\frac{7x^{2}}{x+1}\right)\right)
ypp = sp.diff(y,x,2)
     \left(-\frac{7x^2\left(\frac{x}{x+1}-2\right)^2\sin\left(\frac{7x^2}{x+1}\right)}{x+1} + 2\left(\frac{x^2}{(x+1)^2} - \frac{2x}{x+1} + 1\right)\cos\left(\frac{7x^2}{x+1}\right)\right)
yp.subs({x:1.1})
-0.39949092483303
ypfunc = sp.lambdify(x,yp,'numpy') # convert expression to a function
ypfunc(1.1)
-0.3994909248330303
import numpy as np
ypfunc( np.array([3.2,1.7,-2.1]) )
array([1.60998955, 5.13550871, 1.81199062])
```

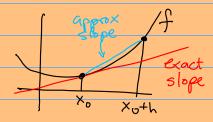
finite-difference approximation

Pros: applicable even when we do NOT have a formula for f

Cons: truncation error significant even with the best compromise catastrophic round-off error

Example: For f in C^2 , approximate f'(x_2).

Use a difference quotient, and apply Taylor's theorem to bound the error:



$$f(x_0+h) = f(x_0) + f'(x_0)h + f'(x_0)h^2$$
 with $x_0 = x_0 + x_0$

Solving for $f'(x_b)$;

$$f'(x_0) = f(x_0 + h) - f(x_0) - h f''(\xi)$$
truncation error = 0

forward difference approximation

Let's try it out, and see how the error depends on h ...

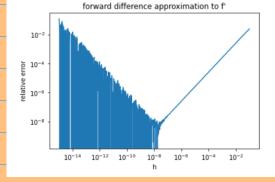
Finite difference approximation

def f(x):
 return np.cos(x)|
 def fp_exact(x): return -np.sin(x)

compute error in forward FD approx to f' for a range of h values ...
h = 10**np.linspace(-15,-1,1000) # various values of h
x0 = 1.1

fdapprox = (f(x0+h) - f(x0))/h # for all the h-values
exact_deriv = fp_exact(x0)

total_fd_error = fdapprox - exact_deriv
total_relative_error = total_fd_error / exact_deriv
import matplotlib.pyplot as plt
plt.loglog(h,total_relative_error)
plt.xlabel('h')
plt.ylabel('relative error')
plt.title("forward difference approximation to f'");



Let's now compute a bound on the relative error that includes the round-off error we suffer when h is small

machine
$$(f(x+h)-f(x))$$
 - $f'(x)$
= $(f((x+h)(1+S_1))(1+S_2) - f(x)(1+S_3))(1+S_4)(1+S_5) - 1$
 $= (f(x) + (h+S_1+S_1h)f'(x) + (h+S_1+S_1h)^2 f''(x) + ...)(1+S_2)$
 $= f(x) - S_3 f(x)(1+S_4)(1+S_5)$

with a little help from sympy.

$$= \frac{1}{h} \left(S_{1} + (S_{2} - S_{3}) \frac{f}{f'} \right) + \left(S_{1} + S_{2} + S_{4} + S_{5} + S_{1} \frac{f''}{f'} \right) + \frac{h}{2} \frac{f''}{f'} \left(1 + 2S_{1} + S_{2} + S_{4} + S_{5} \right) + h.o.t$$

With
$$|S_1|, |S_4|, |S_5| \leq \frac{\epsilon_{\text{mach}}}{2}$$
 and $|S_2|, |S_3| \leq \mu \frac{\epsilon_{\text{mach}}}{2}$

Adding the round-off and truncation errors:

| rel error in f' |
$$\leq \frac{1}{h} \left(1 + \frac{2\mu f}{5!} \right) \frac{\Sigma_{mach}}{z} + \left(3 + \frac{\mu f}{5!} \right) \frac{\Sigma_{mach}}{z}$$

$$h = \left| \begin{array}{c} f' \\ f'' \end{array} \right| \left(1 + 2\mu \left| \frac{f}{f'} \right| \right) \mathcal{E}_{mach}$$

$$A = R h = A$$

1 Enada

Summarizing, the error bound on the forward difference

is minimized at

$$h_{opt} = \int_{Some number depending on f, maybe 5}$$

and from above

Can we do better? Yes - use a centered difference

If f∈ C3

$$f(x+h) = f(x) + hf'(x) + \frac{h^2 f''(x)}{2} + \frac{h^3 f'''(x)}{6} +$$

Thus
$$\frac{f(x+h)-f(x-h)}{2h} = \frac{2hf'(x) + \frac{h^3}{3}(f''(3_4)+f'''(3_4))}{2h}$$

$$= f'(x) + \frac{h^2}{6}f'''(3_5) = f'(x) + O(h^2)$$

Compare with the O(h) error for the forward difference.

Let's do an empirical comparison of the errors in the forward and centered differences ...

"automatic" differentiation (AD)
(differentiation-rule-based)
Would be great if we had another method that has (i) no truncation error
(ii) no catastrophic round-off error
There is such a thing: we use a "differentiation arithmetic".
Suppose you have 2 functions $f \& g$, and define $h = f g$ (their product).
Question: What do we need to know in order to compute say h'(5.7)?
Answer:
So develop an arithmetic of objects like $< f(5.7), f'(5.7) >$, $< g(5.7), g'(5.7) >$,
for example < 3.4, -1.3 >, <7, -2>,
by defining the product of two objects like this:
Compare complex arithmetic:
Other arithmetic enerations, and elementary transcendental functions, similarly
Other arithmetic operations, and elementary transcendental functions, similarly