
Day 18
1. The Fast Fourier Transform (FFT).  
2. Evaluating and estimating derivatives.

We want to form              where 

Explicitly ...

or in shorthand,
just writing the
powers of w   ...

For a complete concrete example, here is F_8, writing the powers of w_8:

Examples of 

We want to exploit the symmetries of this

To reveal the symmetries, begin by dividing the odd-index (blue) columns by the k=1 column.
Dividing means subtracting powers of w:

We see duplication of values, which is the key
to fast evaluation of F y.



Now let's mod by n=8, which doesn't change anything because 

Wow! The upper and lower halves of 
both the even and odd columns are all the same!

All 4 submatrices are in fact

0  0  0  0
0  2  4  6
0  4  0  4
0  6  4  2

Now observe that the shorthand for F , writing powers of   

0  0  0  0                 0  0  0  0
0  1  2  3                 0  1  2  3
0  2  4  6                 0  2  0  2
0  3  6  9                 0  3  2  1

Note this is half of the submatrices above.

Now since                     we see that each of the four submatrices
above are in fact F  !

So in conclusion ...
to compensate for our subtraction of 

from blue columns

first 4 rows

second 4 rows

Thus we can express F  y in terms of F  applied to subvectors of y

In turn, we can express F  in terms of F  , and so on 

until we get to F  and F is trivial:   F   = [ 1 ].  

Let's code it up!



(because I'm using recursion
which has a high overhead)



Recall that the cost of a brute force formation of the matrix F  and multiplying it on y
is O(n  ). (Matrix-vector multiplication needs n elements each requiring 2n operations.)

But exploiting the observations above, can do it with the following cost.

# of operations for size n  = 

a recurrence relation that we (you, in Homework) can solve.

The conclusion will be that 

which is "almost linear" in n.   So much faster than O(n  ).

The speed of the FFT
is what permits for example
real-time auto-tuning of
pop singers.



6.1 Computing derivatives

What is f(x  ), where f is some given function and x   is an arbitrary point in its domain ?

3 methods available:

• symbolic
• interpolation-based (finite-differences, spectral)
• "automatic differentiation" (AD)

● symbolic

If we have a formula for f, this is possible.

Pros:   exact (in exact arithmetic), and very close (        ) in machine arithmetic.

Cons:  inefficient due to sub-expression repetition.

Let's look at an example using sympy ...



● finite-difference approximation

significant even with the best compromise

Pros: applicable even when we do NOT have a formula for f

Cons: truncation error
catastrophic round-off error

Example:   For f in    , approximate f'(x  ).

Use a difference quotient, and apply Taylor's theorem to bound the error: 

Solving for 

forward difference
approximation

truncation error

Let's try it out, and see how the error depends on h ...

[space for empirical observations]



delta2 and delta3 are the relative errors in evaluating f, which can be many multiples
of macheps if there are many steps in evaluating f

with a little help from sympy ...

Let's now compute a bound on the relative error that includes the round-off error
we suffer when h is small ...

truncation error
previously anticipated

Adding the round-off and truncation errors:



Summarizing, the error bound on the forward difference 

is minimized at 

some number depending on f, maybe 5

because 

and from above

Can we do better?    Yes - use a centered difference

Let's do an empirical comparison of the errors in the forward and centered differences ...

Compare with the O(h) error for the forward difference.



[space for empirical comparison of forward and centered differences]



● "automatic" differentiation (AD)

     (differentiation-rule-based)

Would be great if we had another method that has
   (i) no truncation error
   (ii) no catastrophic round-off error

There is such a thing:  we use a "differentiation arithmetic".

Suppose you have 2 functions f & g, and define  h = f g  (their product).

Question: What do we need to know in order to compute say h'(5.7)?

Answer:  

So develop an arithmetic of objects like < f(5.7), f'(5.7) >, < g(5.7), g'(5.7) >,

for example  < 3.4, -1.3 >, <7, -2>,

by defining the product of two objects like this:

      

Compare complex arithmetic:

Other arithmetic operations, and elementary transcendental functions, similarly ...


