Day 18
1. The Fast Fourier Transform (FFT).
2. Evaluating and estimating derivatives.

- jK _ —
We want to form E5 where IE}JK = (,Qn where W, = e n

Examples of &, -

Explicitly ...
— e o © o or in shorthand
PRI S TN S : 10 :
Fo= | B " just writing the © 0 00..
W PR we L. powers of w,, ... O |1 2 ..
2 4 (3
b\f l/‘,'\ Nv\ b\)“ ~ ,O z L‘— 6 e oo

For a complete concrete example, here is F_8, writing the powers of w_8:

[[0 0 00 0 0]
2 3 4 5 6 7]
6 8 10 12 14]
9 12 15 18 21]
12 16 20 24 28]
15 20 25 30 35]

18 24 30 36 42] We want to exploit the symmetries of this
21 28 35 42 49]]

NoupbhWwWN-—-=0

OO OO OOOO0O
— — —

rsTr-errrsmreersreeere

4
6
8
0
2
4

To reveal the symmetries, begin by dividing the odd-index (blue) columns by the k=1 column.
Dividing means subtracting powers of w:

[0 00 070 O 0]
0 2 2 44 6 6]
0 4 4 88 12 12]
0 6 6 12 12 18 18]
0 8 8 16 16 24 24]
0 10 10 20 20 30 30]
0 12 12 24 24 36 36]

0 14 14 28 28 42 42]] We see duplication of values, which is the key
to fast evaluation of F,y.

[B B e K e W e e W e
=) () (@) () (o) () (o) (&

3_ SL&3 . ciln

Now let's mod by n=8, which doesn't change anything becausetn’s = eL s € =1
[[OO0 O O 0/ 0 O O]

[OB0 282 434 6 p6]

[(Opm 48 Opmn 4 M Wow! The upper and lower halves of

[0/0 6 6 4 4 2 2] both the even and odd columns are all the same!

[Om O Om O mu]

[OpE 282 438 6 BO] [

[OO 434 070 4 p4]

[OpE 6 B8 498 2 p2]]

All 4 submatrices are in fact

r,s,meeeA@ ST rrese -esrsrssrmsmsmsre
IO | OIOIOIO
ORNOIOCANO

Now observe that the shorthand for Er writing powers of Wy (s

Now since A = LJZ'

above are in fact R !

=

E@o&f

00
= 0123

0202

0321

So in conclusion ...

-

Fsy =

o
F_‘f ﬂtuem i “r

Fo uen + [9] F7 gou

-

Thus we can express F, y in terms of F, applied to subvectors of y

In turn, we can express F in terms of F , and so on

untilwe gettoF and Fistrivial: F =[11].

POPO|IhPhOPMO

NPPOOINPDAOO
— e e Y e e el

0 0/ Note this is half of the submatrices above.

we see that each of the four submatrices

to compensate for our subtraction of [

from blue columns 2'
3

I import numpy as np

def myfft(y):
I'll use recursion - not the most run-time efficient way
but makes the coding very simple!

n = len(y)
if n==1: return np.array(y,dtype=complex)

yeven = y[::2]

yodd = y[1::2]

w = np.exp(-2j*np.pi/n)
W = w**np.arange(n) # powers of w @ thru n-1

Fyeven = myfft(yeven)
Fyodd = myfft(yodd)

return np.hstack([Fyeven + W[:n//2]*Fyodd, Fyeven + W[n//2:]*Fyodd 1])

array([o, 1, 2, 3, 4])

Let's test it!

n = 2%*]15

print(n)

y = np.random.rand(n)

from time import time

tic = time()

myFy = myfft(y)

toc = time()

print((toc-tic), '‘seconds for my version')

from numpy.fft import fft

tic = time()

npFy = fft(y) # numpy's version

toc = time()

print((toc-tic), ‘seconds for numpy version')

np.allclose(myFy,npFy)

32768
0.2265925407409668 seconds for my version
0.00058746337890625 seconds for numpy version

True

(because I'm using recursion
myfft is correct but 450 times slower than numpy's fit \vhich has a hiagh overhead)

Recall that the cost of a brute force formation of the matrix E, and multiplying it on y
is O(nZ). (Matrix-vector multiplication needs n elements each requiring 2n operations.)

But exploiting the observations above, can do it with the following cost.

of operations for sizen = Cn = 2C, + Ml 4+ N 4+
n

borind 0

L0° -(3 adAtios
_mf'\ LS P ! . !’j
bt 0w

ZC_V__ + 3n-] o\;""
- 7

a recurrence relation that we (you, in Homework) can solve.

The conclusion will be that C,,\ _ O(”‘ loj')_ V\) /l/\)@/\)/

which is "almost linear" in n. So much faster than O(R).

n = np.logspace(1l,6,100)
plt.loglog(n,n**2,label="$n"2$")
plt.loglog(n,n*np.log2(n),label="$n\log 2 n$")
plt.loglog(n,n,label="n")

plt.legend(); plt.grid();

plt.xticks(fontsize=15); plt.yticks(fontsize=15);
('

plt.xlabel('n',fontsize=15);

10% =

10%° GO(n‘) bk dor(a P - e

>(n[|jw) T
()

: ol
106 4ﬁ///; CD .

10¢ 4////ﬁ

(\C\.

102

The speed of the FFT
is what permits for example
real-time auto-tuning of
pop singers.

100 102 10° 10 105 106

le/\o

6.1 Computing derivatives

What is f(x,), where f is some given function and % is an arbitrary point in its domain ?
3 methods available:

* symbolic
* interpolation-based (finite-differences, spectral)
e "automatic differentiation" (AD)

@® symbolic

If we have a formula for f, this is possible.

Pros: exact (in exact arithmetic), and very close Emch) in machine arithmetic.

Cons: inefficient due to sub-expression repetition.

Let's look at an example using sympy ...
Symbolic differentiation

import sympy as sp

X

y
y

. 7x32
3x + sin
x+1

yp = sp.diff(y,x)
yp

(7x? 14x) (7x?)
- - + cos +3
(x+ 1) x+1 x+1

ypp = sp.diff(y,x,x)

sp.symbols('x")
3*x + sp.sin(7*x**2/(1+x))

ypp
7,\:1%—2): \111(%:1) (2 2 732
7<_ x+1 +2(|v\-1|: - .\-—] + I)COS(A\«])
x+1
ypp = sp.diff(y,x,2)
ypp
7'\:1f—33': un(%) 2 - 2.2
7<— — +2(.\;1.5 - = +|)C()s('\',‘_])
x+1
yp.subs({x:1.1})
—0.39949092483303
ypfunc = sp.lambdify(x,yp, 'numpy') # convert expression to a function

ypfunc(1.1)

-0.3994909248330303

import numpy as np

ypfunc(np.array([3.2,1.7,-2.1]))
array([1.60998955, 5.13550871, 1.81199062])

@ finite-difference approximation

Pros: applicable even when we do NOT have a formula for f
Cons: truncation error } significant even with the best compromise
catastrophic round-off error

Example: For fin Cz, approximate f'(x).

Use a-difference quotient, and apply Taylor's theorem to bound the error:

AL

Exack
s|

°fF<

R T
"?(xo+ﬁ\> = ,j:Cx,g + ,Si/cg,,)lf\ + {”@)E It 3 behoan %, 2 K+
Solving for %f(xo) :
feo = fow-{6o — bl
- . >
\//'/

truncation error - O(h)

L_,f"—‘~\(—————————————’

forward difference
approximation

Let's try it out, and see how the error depends on h ...

Finite difference approximation

: def f(x): return np.cos(x)|
def fp_exact(x): return -np.sin(x)

compute error in forward FD approx to f' for a range of h values ...

h = 10**np.linspace(-15,-1,1000) # various values of h
x0 = 1.1

fdapprox = (f(x0+h) - f(x0))/h # for all the h-values
exact deriv = fp_exact(x0)

total fd error = fdapprox - exact deriv
total_relative_error = total_fd error / exact_deriv

import matplotlib.pyplot as plt
plt.loglog(h,total relative error)

plt.xlabel('h")

plt.ylabel('relative error"')

plt.title("forward difference approximation to f'");

forward difference approximation to f'

1072

relative error

Let's now compute a bound on the relative error that includes the round-off error
we suffer when h is sm

al
na.cl it ('{6“ L‘) ’F(K\> »f &)

576

— (,F (6’”")(“_8')(Hg /F(K)(Hg_g))(l""gq)(!'}'gg) — |
|r\,€'(x)

:(ch) + (W48 +Sh)L6y -+ (u+§+ak)?’@)+_..>(|+gz) —)
- 4&) - S,.mc(k)](148) 14+5¢ |

hf(x)

with a little help from sympy ...

= L[S, +6-S\F S +S 4 SurSe 4 S
h(+(5, 3)%7),%(+S, 4+ S +Sc 4 :f,})
+ L\i (}+Z&+Sz—t~&,;+85> + hot.

2.4’

delta2 and delta3 are the relative errors in evaluating f, which can be many multiples
of macheps if there are many steps in evaluating f — 54,3 /A mg 2/2 i

Wit |S)[,[S4, (8] < T aud [S], [83) < B

<«

Adding the round- o;‘f and truncatioln errors: fl
el e S0 G
4+ L’;E'_J _&—truncation error
ARY

previously anticipated

50!(” el eras bowd _— _ L Hzﬂﬁ;))zmﬂ J,,Lk?f,”l = D

Summarizing, the error bound on the forward difference ﬁ'ﬁ—ﬂf\) ’F(K) 4“6(3

iSs minimized at

ho= | (e

ksome number depending on f, maybe 5

and from above

- Stwme Auwbr
reA . exrs< lh:hoﬁ = T ? vad e—buj_c cronoaret

t z:nmd«
because ,Z_M‘Jn' >> Z;V“c[,\ /

Can we do better? Yes - use a centered difference

/
I e
L) = 4644 hf &) + [,{Z,F <) + \f\gfgm(a)
%:Cx h) = ,E:(v) L\{J(x) + |,\'z ’)C B — K3 ’fm(g—')
(_KULS 73 n I
St) - Lx- (,\) = ZL\(JC (<) -+ LGC (3, +,€ (39)
Zh

= L6+ {'"@ = £+ o)

Compare with the O(h) error for the forward difference.

fone Slupe & %

Let's do an empirical comparison of the errors in the forward and centered differences ...

[space for empirical comparison of forward and centered differences]

@ "automatic" differentiation (AD)

(differentiation-rule-based)

Would be great if we had another method that has
(i) no truncation error
(i) no catastrophic round-off error
There is such a thing: we use a "differentiation arithmetic".
Suppose you have 2 functions f & g, and define h = fg (their product).

Question: What do we need to know in order to compute say h'(5.7)?

Answer:

So develop an arithmetic of objects like < f(5.7), f'(5.7) >, < g(5.7), 9'(5.7) >,
for example < 3.4, -1.3 >, <7, -2>,

by defining the product of two objects like this:

Compare complex arithmetic:

Other arithmetic operations, and elementary transcendental functions, similarly ...

