Day 19 Differentiation by finite differences, cont'd.
Differentiation arithmetics.

Let's begin by reviewing the error bound for the forward difference quotient
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Using the methods we learned with Ch 1,
we obtained the leading order terms in the relative error are:
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for the same example used to illustrate symbolic differentiation:

#%matplotlib notebook
import sympy as sp
—————— X =-sp-symbots('x")
y = 3*X + sp.sin(7*x**2/(1+x)) # example from last time

yp = sp.diff(y,x).simplify()
ypp= sp.diff(y,x,x).simplify()
f = sp.lambdify(x,y , "numpy')

L ! py')
fpp_exact = sp.lambdify(x,ypp, 'numpy')

h—=-10**np.tinspace(=15,-2,500)

x =1.1

fp_fd = (f(x+h)-f(x))/h # forward difference approximation to derivative of f for many different h values
error = np.abs(fp_fd - fp_exact(x))

relerr = error/np.abs(fp_exact(x))
import matplotlib.pyplot as plt
plt.figure(figsize=(6,12))
plt.subplot(211)

—pttisemitogx(h, fp_exact(x)+0*h, tabet="exact f\'")
plt.semilogx(h, fp_fd, label='forward difference approx')
plt.legend()
plt.xlabel('h'); plt.ylabel('derivative approximation')
plt.subplot(212)
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emach = 2**(-52)

MO = np.abs(f(x))

M1 = np.abs(fp_exact(x))

M2 = np.abs(fpp_exact(x))

mu = 2 # estimate of multiple of emach/2 in error of evaluating f

h * *Mmu*MO/M h

l="error bound (cf. 6.10, p32

plt.loalog(h,relerrfbound,labe 6)',alpha=0.5)

plt.tegend()
plt.xlabel('h'); plt.ylabel('relative error');
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* Zoom in to see how rounding errors vary with h in detail!




To find the optimal value of h, differentiate wrt h and set to O:
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Compare with the O(h) error for the forward difference.




Empirical observation of error in centered finite difference (and comparison with one-sided difference):

import numpy as np
def f(x): return np.cos(x)
def fp_exact(x): return -np.sin(x)
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fp_fd = (f(x+h)-f(x))/h #2 forward difference approximation to derivative of f for many different h values
fp cd =(f(x+h)-f(x-h))/(2*h) # forward difference approximation to derivative of f for many different h val

error =np ahq(fp_fd = fp_pxar't(x))

error2 = np.abs(fp_cd - fp_exact(x))

import matplotlib.pyplot as plt

—pltloglog(h,error label=forward difference’y

plt:loglog(h:erroré,labelz'centered difference’)

pltlegend()
plt.xlabel('h"); plt.ylabel(‘error";

error

10-114{ — forward difference m‘pﬂ

107! -

1077 1

10-5 -

1077 1

1077 1

centered difference

107** 10°** 107 107°® 10°* 10°¢ 107¢




@ "automatic" differentiation (AD), differentiation arithmetics

Would be great if we had another method that has

(ii) no catastrophic round-off error

There is such a thing: we use a "differentiation arithmetic".
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Other arithmetic operations, and elementary transcendental functions, similarly ...
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[space for other operations in a first-order single-variable differentiation arithmetic]




Example:

Let's do this example, first symbolically so we can check our AD answer.

An example for illustrating a Differentiation Arithmetic

X = sp.symbols('x")

xX**¥2/(x=-13)

y
y

,
x2
x—13

yp = sp.diff(y,x)

yp

x2 + 2x
(x—13* x—13

# evaluate y and y' at 3

y.subs({x:3}), yp.subs({x:3}) # use this to validate our AD answer

(-9/10, -69/100)

By AD: rules are: <-(,-§-'7 + C‘j:ﬁ') = <~ficl,'§'rﬁ'>
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Now let's implement this Differentiation Arithmetic in code ...




Implementation of a differentiation arithemetic

with a gentle introduction to object-oriented programming in Python

import numpy as np
class ad:
E— def init (self,val,der=0): # allows ¢ = ad(3)

self.val val
- | self.der = der

def repr_ (self):
return f'< {self.val}, {self.der} >’

= def add (self,other):
return ad( self.val + other.val , self.der + other.der )

def sub (self,other):
return ad( self.val - other.val , self.der - other.der )

def mul (self,other):
return ad( self.val * other.val , self.der*other.val + self.val*other.der )

— def truediv (self,other):
return ad( self.val / other.val , ( self.der*other.val - self.val*other.der )/ other.val**2 )

def sin(self):
return ad( np.sin( self.val ), np.cos(self.val)*self.der )

# to allow use of syntax sin(f)
—  def sin(x):
if isinstance(x,ad):
return x.sin()
else:
return np.sin(x)

# what we want to be able to do:
f = ad(3.4,-1.3)
g ad(7,-2)
G ad(3)
display(f)
display(qg)
display(c)

f+g
print('product f*g')
display( f*g )




Check against symbolic differentiation

x = ad(3,1)
X*X
<9, 6 >
X/X

<1.0, 0.0 >
X + X

<6, 2>
X = X

<0, 0>

seven = ad(7,0)
seven*x

<21, 7 >

z = ad(np.pi/2)
sin(z)

<1.0, 0.0 >

X

y
y

o(557)
3x +sin
x+1

yprime = sp.diff(y,x)
yprime

( 7x? 14x ) ( 7x? )
- =+ cos +3
x+1? x+1 x+1

y.subs({x:2.}),yprime.subs({x:2.})

sp.symbols('x")
3*%x + sp.sin(7*x**2/(1+x))

(6.09131723555475, -3.19622486179360)

symbolic
X = ad(2.,1.)
three = ad(3,0) agree
seven = ad(7,0)
one = ad(1,0)

y = three*x + sin(seven*x*x/(one+x))y = 3*x + sp.sin(7*x**2/()x))

y
< 6.091317235554749, -3.1962248617936035 > AD




Extending the DAidea:

It's straightforward to extend the idea to
(i) higher-order AD
(i) AD in multiple variables
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Machine learning, reverse-mode AD aka back-propagation

The above process is called "forward-mode" AD.
It is accurate to machine epsilon, and easy to program.
But it is not optimally efficient.

Machine learning - training a neural network - involves minimizing a real-valued function
called the "loss", whichis-a measure of how poorly the network is performing the desired task.

The network is characterized by a large set of parameters called "weights”,
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The standard method is to move repeatedly in the direction of steepest descent.
That direction is
Because of the huge dimension of ) , we need to be as efficient as possible (as well as accurate).
"Reverse-mode AD" or "back-propagation” is more efficient than forward-mode AD.
In the diagram below,
the upper slots are for the *values* of initial, intermediate, and final quantities in the calculation,
the lower slots are for the *derivative of the output value y with respect to the quantity*.
Our goal is to fill in all the slots in two sweeps:
(i) a forward sweep to fill in all the *values*

(itya reverse sweep (back propagation) to-filkin-all the partial derivatives,

The last numbers we compute in the reverse sweep will be the desired components of the gradient of y.
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Forward sweep to fill in the values:
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For the reverse sweep to fill in the partial derivatives of y, we need to develop some rules ...

Let's look at multiplication.
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Exercise for you:

Find the back prop rules for the operations of (":) ) /—-)} ‘—:—;nd branching.




Finally let's apply our back prop rules to compute the gradient of our example expression.
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