Day 19 Differentiation by finite differences, cont'd.
Differentiation arithmetics.

Let's begin by reviewing the error bound for the forward difference quotient
v ,v' v,-'vvvv- .,.. .v... vv I~ Y " - v.. -vV-., -.

Using the methods we learned with Ch 1,
we obtained the leading order terms in the relative error are:

[rel ecae W £ | < _L(HZ/A[ESFTD%,L + (34 et ’

[:L[)%c\

fd

A

h

(.
4+ L\ , :E" 45— truncation error
—Z| /F{ previousty anticipated

for the same example used to illustrate symbolic differentiation:

#%matplotlib notebook
import sympy as sp
—————— X =-sp-symbots('x")
y = 3*X + sp.sin(7*x**2/(1+x)) # example from last time

yp = sp.diff(y,x).simplify()
ypp= sp.diff(y,x,x).simplify()
f = sp.lambdify(x,y , "numpy')

L ! py')
fpp_exact = sp.lambdify(x,ypp, 'numpy')

h—=-10**np.tinspace(=15,-2,500)

x =1.1

fp_fd = (f(x+h)-f(x))/h # forward difference approximation to derivative of f for many different h values
error = np.abs(fp_fd - fp_exact(x))

relerr = error/np.abs(fp_exact(x))
import matplotlib.pyplot as plt
plt.figure(figsize=(6,12))
plt.subplot(211)

—pttisemitogx(h, fp_exact(x)+0*h, tabet="exact f\'")
plt.semilogx(h, fp_fd, label='forward difference approx')
plt.legend()
plt.xlabel('h'); plt.ylabel('derivative approximation')
plt.subplot(212)

p]f 'Ing]ng(h,rp'lprr,'lnhp]—'fnrwnrd difference fnrrnr')

emach = 2**(-52)

MO = np.abs(f(x))

M1 = np.abs(fp_exact(x))

M2 = np.abs(fpp_exact(x))

mu = 2 # estimate of multiple of emach/2 in error of evaluating f

h * *Mmu*MO/M h

l="error bound (cf. 6.10, p32

plt.loalog(h,relerrfbound,labe 6)',alpha=0.5)

plt.tegend()
plt.xlabel('h'); plt.ylabel('relative error');

T -0.34 i —— forward difference error
[error bound (cf. 6.10, p326)
| | /|
044 — H' e = 1071 1
\‘r ‘
S— 1} -]
c
S [’
*g —0.5 1 ‘\
= “‘ R UER
g \‘ 5
a —0.6]
444,2 | "E
©
> -—
b= [
‘!E ‘ = -5
2 —0.7 1 _ 1o
@ \
o° “
| \ |
087 L
\ 1077 A
0.9 - ‘ — exact f' 1
' —— forward difference approx
10°% 10712 10710 1078 10°6 1074 102 107 10712 1071 1078 106 10~4 102
h h

* Zoom in to see how rounding errors vary with h in detail!

To find the optimal value of h, differentiate wrt h and set to O:

W bowd — 1 +) 2n L
"JTH'N ro(l-}%"‘!/))é—dﬂ'f'—;

i
I8
O

an ne ¢

is minimized at 1'\
’/\ o = / l P
¥ ept \ | G

*\—some number depending on f, maybe 5

and from above

- Skv«enumkej
A - <A lln-—l«,,l,e Lk S i"w‘ Jié\jf 1

-h) Z:AMIA
because ’ J /
\]é_.wdn .>> Ivech a

?
Can we do better? Yes - use a centered difference

\ /T//p“\\ condestd A flterence slope

e LeC
))
m ~ n Py 7] m

= L6+ gf’"@) = L'+ O 2)

Compare with the O(h) error for the forward difference.

Empirical observation of error in centered finite difference (and comparison with one-sided difference):

import numpy as np
def f(x): return np.cos(x)
def fp_exact(x): return -np.sin(x)

11
1.1

Y
N

fp_fd = (f(x+h)-f(x))/h #2 forward difference approximation to derivative of f for many different h values
fp cd =(f(x+h)-f(x-h))/(2*h) # forward difference approximation to derivative of f for many different h val

error =np ahq(fp_fd = fp_pxar't(x))

error2 = np.abs(fp_cd - fp_exact(x))

import matplotlib.pyplot as plt

—pltloglog(h,error label=forward difference’y

plt:loglog(h:erroré,labelz'centered difference’)

pltlegend()
plt.xlabel('h"); plt.ylabel(‘error";

error

10-114{ — forward difference m‘pﬂ

107! -

1077 1

10-5 -

1077 1

1077 1

centered difference

107** 10°** 107 107°® 10°* 10°¢ 107¢

@ "automatic" differentiation (AD), differentiation arithmetics

Would be great if we had another method that has

(ii) no catastrophic round-off error

There is such a thing: we use a "differentiation arithmetic".

Answer: 1), 417, A7,9(0. —
/ / !
— . W
So develop an arithmetic of objects Iike% f(5.7), f'(5.7)](g(5.7),) >)

N———
for example < 3.4, -1.3 >, <7, -2>, V

by defining the product of two objects like this:

val ol) Qlis? =]) Jae,
Compare complex arithmetic: [C o0 Na. 2im
\ “,.evo]w}k A 'V"\M/
4%

Q.\-rc) ‘)Y\W\>)" Qﬁi‘e;ﬂl >

R T 5 N e A

Other arithmetic operations, and elementary transcendental functions, similarly ...

—+ — ~+ +

[space for other operations in a first-order single-variable differentiation arithmetic]

Example:

Let's do this example, first symbolically so we can check our AD answer.

An example for illustrating a Differentiation Arithmetic

X = sp.symbols('x")

xX**¥2/(x=-13)

y
y

,
x2
x—13

yp = sp.diff(y,x)

yp

x2 + 2x
(x—13* x—13

evaluate y and y' at 3

y.subs({x:3}), yp.subs({x:3}) # use this to validate our AD answer

(-9/10, -69/100)

By AD: rules are: <-(,-§-'7 + C‘j:ﬁ') = <~ficl,'§'rﬁ'>

I
<{,f'> %<q,9> = <fa,{c4+La>
; JY J 'J, ’J’
1N -~

= 2z -

Xx=<3,1>

<t =

Now let's implement this Differentiation Arithmetic in code ...

Implementation of a differentiation arithemetic

with a gentle introduction to object-oriented programming in Python

import numpy as np
class ad:
E— def init (self,val,der=0): # allows ¢ = ad(3)

self.val val
- | self.der = der

def repr_ (self):
return f'< {self.val}, {self.der} >’

= def add (self,other):
return ad(self.val + other.val , self.der + other.der)

def sub (self,other):
return ad(self.val - other.val , self.der - other.der)

def mul (self,other):
return ad(self.val * other.val , self.der*other.val + self.val*other.der)

— def truediv (self,other):
return ad(self.val / other.val , (self.der*other.val - self.val*other.der)/ other.val**2)

def sin(self):
return ad(np.sin(self.val), np.cos(self.val)*self.der)

to allow use of syntax sin(f)
— def sin(x):
if isinstance(x,ad):
return x.sin()
else:
return np.sin(x)

what we want to be able to do:
f = ad(3.4,-1.3)
g ad(7,-2)
G ad(3)
display(f)
display(qg)
display(c)

f+g
print('product f*g')
display(f*g)

Check against symbolic differentiation

x = ad(3,1)
X*X
<9, 6 >
X/X

<1.0, 0.0 >
X + X

<6, 2>
X = X

<0, 0>

seven = ad(7,0)
seven*x

<21, 7 >

z = ad(np.pi/2)
sin(z)

<1.0, 0.0 >

X

y
y

o(557)
3x +sin
x+1

yprime = sp.diff(y,x)
yprime

(7x? 14x) (7x?)
- =+ cos +3
x+1? x+1 x+1

y.subs({x:2.}),yprime.subs({x:2.})

sp.symbols('x")
3*%x + sp.sin(7*x**2/(1+x))

(6.09131723555475, -3.19622486179360)

symbolic
X = ad(2.,1.)
three = ad(3,0) agree
seven = ad(7,0)
one = ad(1,0)

y = three*x + sin(seven*x*x/(one+x))y = 3*x + sp.sin(7*x**2/()x))

y
< 6.091317235554749, -3.1962248617936035 > AD

Extending the DAidea:

It's straightforward to extend the idea to
(i) higher-order AD
(i) AD in multiple variables

H<ff,f">*<g,q,9">=

<f3, $9+44], £'q + 285+ §" 7 =

x=<3,1,0> Wé= XX = <ﬂ) \§+§[, 0°C+ 41l +%0 ">

(ii) Suppose __? 'R?,e \}'Z‘/\\ /_L/jé/:_,_\ Z
. . . N
Represent f b 9, (=1 / é 2 Z , K{-‘— S
— S‘I:\JW\ C (9 = ><Q' 6]\
And the product rule would be ‘{d: \ M/SZX é \
iy ') 2/

~ N S\ r |\ n, \
<, 9%, W >x<9,99,d,6> = T~

/A
represent f by {‘-y/k\\/?F

Machine learning, reverse-mode AD aka back-propagation

The above process is called "forward-mode" AD.
It is accurate to machine epsilon, and easy to program.
But it is not optimally efficient.

Machine learning - training a neural network - involves minimizing a real-valued function
called the "loss", whichis-a measure of how poorly the network is performing the desired task.

The network is characterized by a large set of parameters called "weights”,

(ﬁ)o, bo,, 2,

oy wioooooooeo
!GSS 3 = NCTS) . Want to minimize y with respect to Ej,

The standard method is to move repeatedly in the direction of steepest descent.
That direction is
Because of the huge dimension of) , we need to be as efficient as possible (as well as accurate).
"Reverse-mode AD" or "back-propagation” is more efficient than forward-mode AD.
In the diagram below,
the upper slots are for the *values* of initial, intermediate, and final quantities in the calculation,
the lower slots are for the *derivative of the output value y with respect to the quantity*.
Our goal is to fill in all the slots in two sweeps:
(i) a forward sweep to fill in all the *values*

(itya reverse sweep (back propagation) to-filkin-all the partial derivatives,

The last numbers we compute in the reverse sweep will be the desired components of the gradient of y.

_ — 2
Example: 6 = X w‘k K= 5,0= . Smk Cj) éﬂ 56
representing input K- W 67(IA)
such as an image gz

SE__E=N_ L7

) - \
representing weights étj l{l

in the network

S O

Forward sweep to fill in the values:

ﬁ: xt 4 x:%,bg:\’s‘gazko\',éﬂ.)&/]‘

representinginput % — 2 (})?4 &\J)
such pas an image o }((L
N 3] N /z
DN e DTN

| \N@r 1 L O\

in the network

rgo}resenting weights\ > | / \éu \ {{lJ
AN PN

\ e N
SR N G

For the reverse sweep to fill in the partial derivatives of y, we need to develop some rules ...

Let's look at multiplication.

L5k pep _

-
X/ éXb Ak C)X{'

¢
;
t

2o
N\
s
Q
S
(1

Exercise for you:

Find the back prop rules for the operations of (":)) /—-)} ‘—:—;nd branching.

Finally let's apply our back prop rules to compute the gradient of our example expression.

a

