
Day 19   Differentiation by finite differences, cont'd. 
               Differentiation arithmetics.

Let's begin by reviewing the error bound for the forward difference quotient
in machine arithmetic, and comparing it with the empirically observed error ...



#%matplotlib notebook
import sympy as sp
x = sp.symbols('x')
y = 3*x + sp.sin(7*x**2/(1+x))  # example from last time 
yp = sp.diff(y,x).simplify()
ypp= sp.diff(y,x,x).simplify()
f        = sp.lambdify(x,y ,'numpy')
fp_exact = sp.lambdify(x,yp,'numpy')
fpp_exact = sp.lambdify(x,ypp,'numpy')

h = 10**np.linspace(-15,-2,500)
x = 1.1
fp_fd = (f(x+h)-f(x))/h  # forward difference approximation to derivative of f for many different h values
error = np.abs(fp_fd - fp_exact(x))
relerr = error/np.abs(fp_exact(x))
import matplotlib.pyplot as plt
plt.figure(figsize=(6,12))
plt.subplot(211)
plt.semilogx(h,fp_exact(x)+0*h,label='exact f\'')
plt.semilogx(h,fp_fd,label='forward difference approx')
plt.legend()
plt.xlabel('h'); plt.ylabel('derivative approximation')
plt.subplot(212)
plt.loglog(h,relerr,label='forward difference error')
emach = 2**(-52)
M0 = np.abs(f(x))
M1 = np.abs(fp_exact(x))
M2 = np.abs(fpp_exact(x))

mu = 2 # estimate of multiple of emach/2 in error of evaluating f

relerr_bound = h/2*M2/M1 + emach/2*(1+2*mu*M0/M1)/h  + (3+ mu + M2/M1 )*emach/2  
plt.loglog(h,relerr_bound,label='error bound (cf. 6.10, p326)',alpha=0.5)

plt.legend()
plt.xlabel('h'); plt.ylabel('relative error');

truncation error
previously anticipated

Using the methods we learned with Ch 1, 
we obtained the leading order terms in the relative error are:

Let us plot this bound along with the actual empirical error 
for the same example used to illustrate symbolic differentiation:

* Zoom in to see how rounding errors vary with h in detail!



To find the optimal value of h, differentiate wrt h and set to 0:

Summarizing, the error bound on the forward difference 

is minimized at 

some number depending on f, maybe 5

because 

and from above

Can we do better?    Yes - use a centered difference

Let's do an empirical comparison of the errors in the forward and centered differences ...

Compare with the O(h) error for the forward difference.



import numpy as np
def f(x): return np.cos(x)
def fp_exact(x): return -np.sin(x)

x = 1.1 

h = 10**np.linspace(-15,-1,500)

fp_fd = (f(x+h)-f(x))/h  #2 forward difference approximation to derivative of f for many different h values
fp_cd =(f(x+h)-f(x-h))/(2*h)  # forward difference approximation to derivative of f for many different h values

error = np.abs(fp_fd - fp_exact(x))
error2 = np.abs(fp_cd - fp_exact(x))

import matplotlib.pyplot as plt
plt.loglog(h,error ,label='forward difference')
plt.loglog(h,error2,label='centered difference')
plt.legend()
plt.xlabel('h'); plt.ylabel('error');

Empirical observation of error in centered finite difference (and comparison with one-sided difference):



● "automatic" differentiation (AD), differentiation arithmetics

Would be great if we had another method that has
   (i) no truncation error
   (ii) no catastrophic round-off error

There is such a thing:  we use a "differentiation arithmetic".

Suppose you have 2 functions f & g, and define  h = f g  (their product).

Question: What do we need to know in order to compute say h'(5.7)?

Answer:  

So develop an arithmetic of objects like < f(5.7), f'(5.7) >, < g(5.7), g'(5.7) >,

for example  < 3.4, -1.3 >, <7, -2>,

by defining the product of two objects like this:

      

Compare complex arithmetic:

 

Other arithmetic operations, and elementary transcendental functions, similarly ...



[space for other operations in a first-order single-variable differentiation arithmetic]



Example:

Let's do this example, first symbolically so we can check our AD answer.

By AD: rules are: 

x = < 3, 1 >

Now let's implement this Differentiation Arithmetic in code ...



[space for Python implementation of first-order single-variable DA]



symbolic

AD

agree



Extending the DA idea:

It's straightforward to extend the idea to
(i) higher-order AD
(ii) AD in multiple variables

(i) < f, f', f'' > * < g, g', g'' > = 

x = < 3, 1, 0 >

(ii) Suppose 

Represent f by 

And the product rule would be 

And for 

represent f by 

with product rule 



Machine learning, reverse-mode AD  aka back-propagation

The above process is called "forward-mode" AD.
It is accurate to machine epsilon, and easy to program.
But it is not optimally efficient.

Machine learning - training a neural network - involves minimizing a real-valued function
called the "loss", which is a measure of how poorly the network is performing the desired task.

The network is characterized by a large set of parameters called "weights", 

. Want to minimize y with respect to 

The standard method is to move repeatedly in the direction of steepest descent.

That direction is 

Because of the huge dimension of      , we need to be as efficient as possible (as well as accurate).

"Reverse-mode AD" or "back-propagation" is more efficient than forward-mode AD.

In the diagram below, 
the upper slots are for the *values* of initial, intermediate, and final quantities in the calculation, 
the lower slots are for the *derivative of the output value y with respect to the quantity*.

Our goal is to fill in all the slots in two sweeps:
(i) a forward sweep to fill in all the *values*
(ii) a reverse sweep (back propagation) to fill in all the partial derivatives,

The last numbers we compute in the reverse sweep will be the desired components of the gradient of y.

Example: 

representing input
such as an image

representing weights
in the network



representing input
such as an image

representing weights
in the network

Forward sweep to fill in the values:

For the reverse sweep to fill in the partial derivatives of y, we need to develop some rules ...

Let's look at multiplication.



Exercise for you:

Find the back prop rules for the operations of                                 and branching.



Finally let's apply our back prop rules to compute the gradient of our example expression.


