
Machine learning, reverse-mode AD  aka back-propagation

The above process is called "forward-mode" AD.
It is accurate to machine epsilon, and easy to program.
But it is not optimally efficient.

Machine learning - training a neural network - involves minimizing a real-valued function
called the "loss", which is a measure of how poorly the network is performing the desired task.

The network is characterized by a large set of parameters called "weights", 

. Want to minimize y with respect to 

The standard method is to move repeatedly in the direction of steepest descent.

That direction is 

Because of the huge dimension of      , we need to be as efficient as possible (as well as accurate).

"Reverse-mode AD" or "back-propagation" is more efficient than forward-mode AD.

In the diagram below, 
the upper slots are for the *values* of initial, intermediate, and final quantities in the calculation, 
the lower slots are for the *derivative of the output value y with respect to the quantity*.

Our goal is to fill in all the slots in two sweeps:
(i) a forward sweep to fill in all the *values*
(ii) a reverse sweep (back propagation) to fill in all the partial derivatives,

The last numbers we compute in the reverse sweep will be the desired components of the gradient of y.

Example: 

representing input
such as an image

representing weights
in the network

Reverse mode AD cont'd

Reverse sweep will fill in the partial derivatives of y



representing input
such as an image

representing weights
in the network

Forward sweep to fill in the values:

For the reverse sweep to fill in the partial derivatives of y, we need to develop some rules ...

Let's look at multiplication.



Exercise for you:

Find the back prop rules for the operations of                                 and branching.

Branching - y depends on     via multiple paths



Finally let's apply our back prop rules to compute the gradient of our example expression.

representing input
such as an image

representing weights
in the network

back-propagation of partial derivatives of output

Let's check our reverse-mode AD results with symbolic differentiation:

import sympy as sp
x,w = sp.symbols('x,w')
y = x**2/(x-w)
dydx = sp.diff(y,x)
dydw = sp.diff(y,w)
print('partial derivatives of y wrt x,w :')
display(dydx)
display(dydw)
values = {x:3,w:13}
print(f'value of y at x={values[x]},w={values[w]}: {y.subs(values)}\n')
print(f'partial derivatives at x={values[x]},w={values[w]}:',\
      f'{dydx.subs(values)}, {dydw.subs(values)}')

xk = sin(xi)

dy/dxi = 
     dy/dk * dxk/dxi
   =  "A" * cos(xi)



= numerical evaluation of definite integrals

Quadrature 

The word quadrature comes from 
real-world estimating of

area of region R

Crude estimate: 
     count the "quadrats".

Start with 1D:              To approximate        

We will sample f at m+1 points
and devise a "quadrature rule"

as accurately as possible.

We would really like Q(cf) = c Q(f) for any constant c
and Q(f+g) = Q(f)+Q(g)
to mirror the corresponding properties required of an integral.

This forces q to be a linear combination of its arguments (proof?):

Factoring out (b-a)
from the w's makes
the     independent
of the interval length.

Why not just find a formula F such that F' = f, and use J(f) = F(b) - F(a)?

We will when we can, but a closed formula for such an F frequently 
(i) does not exist, or (ii) is a pain to obtain.

It remains to choose the        and the       to get an accurate approximation of 

Based on our experience with interpolation, it seems likely that some placements
of the x_j will be better than others. But supposed we've decided on the {x_j}.
Maybe uniformly space, maybe not.

Then we need to decide on the weights 

area of stone = 6 to 9



What principle(s) should we use to constrain the weights?

Example: m=0, one sample of f:

What's a good choice for 

Seems like it is highly desirable to get the integral of a constant function
exactly correct:

So our one-point quadrature rule is: 

What if we have more than 1 sample point?

What does            dictate?

. That's 1 constraint on m+1 variables.

   We need m additional constraints.

How about requiring the rule to integrate linear functions correctly?

That provides one more (linear) constraint
on the weights.

Continuing the theme, we could require that Q gets the exact integral
for all polynomials of degree m or less:

This is m+1 (linear) constraints on the m+1 variables

Such a Q is said to have "polynomial degree m".



We can arrive at the same quadrature rule Q in another way ...

Let                              be the unique polynomial of degree at most m

that interpolates the data 
Then define  Q(f) =   p(f).   (This integral is easy to do symbolically 
                                              because p is a polynomial.)

We could write p(f) in terms of the Lagrange polynomials:

which can be computed
symbolically exactly.

We can show that the two definitions of Q are equivalent.

Another example:

(m+1)-point rule of polynomial degree m with 

This is called the "closed Newton-Cotes rule" of degree m. 

Again note that once the {x_j} are chosen, the requirement to be of polynomial degree m 
fixes the weights.

If the m+1 nodes are uniformly spaced with the endpoints a,b omitted, this is called the
"open Newton-Cotes" rule of degree m.

and the others uniformly spaced
in between.

Deriving the weights exactly using sympy
# derive weights for quadrature rule by integrating Lagrange form of interpolating polynomial
import numpy as np
xx = sp.symbols('x')
a,b = 0,2
H = b-a
m = 3
x = [sp.Rational(j*H,m) for j in range(m+1)]
display(x)

alpha = []
for j in range(m+1):
    Lj = 1
    for i in range(m+1):
        if i!=j: Lj *= (xx-x[i])/(x[j]-x[i])
    Lj = Lj.expand()
    display(Lj)
    alpha.append(sp.integrate(Lj,(xx,a,b))/H)
alpha



Let's "funcify" the above code and look at some other concrete examples ...
    closed Newton-Cotes on several intervals
    open Newton-Cotes
    randomly chosen points

def linspace(a,b,n):  # exact rationals with sympy
    h = b-a
    return [a + sp.Rational(i,n-1)*h for i in range(n)]

def get_alphas(a,b,x):
    H = b-a
    alpha = []
    for j in range(m+1):
        Lj = 1
        for i in range(m+1):
            if i!=j: Lj *= (xx-x[i])/(x[j]-x[i])
        Lj = Lj.expand()
        #display(Lj)
        alpha.append(sp.integrate(Lj,(xx,a,b))/H)
    return alpha

m = 3

a,b = 0,2
x = linspace(a,b,m+1)
print( f'For the interval [{a},{b}] with the {m+1} points {x},\nthe alphas are',
       get_alphas(0,2,x) )

a,b = 0,100
x = linspace(a,b,m+1)
print( f'For the interval [{a},{b}] with the {m+1} points {x},\nthe alphas are',
       get_alphas(a,b,x) )

Copyable code:


