Machine learning, reverse-mode AD aka back-propagation

Reverse mode AD  contd

The above process is called "forward-mode" AD.
It is accurate to machine epsilon, and easy to program.
Butitis not optimally efficient.

Machine learning - training a neural network - involves minimizing a real-valued function
called the "loss", which is a measure of how poorly the network is performing the desired task.

The network is characterized by a large set of parameters called "weights",
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The standard method is to move repeatedly in the direction of steepest descent.
That direction is
Because of the huge dimension of ) , we need to be as efficient as possible (as well as accurate).
"Reverse-mode AD" or "back-propagation” is more efficient than forward-mode AD.
In the diagram below,
the upper slots are for the *values* of initial, intermediate, and final quantities in the calculation,
the lower slots are for the *derivative of the output value y with respect to the quantity*.
Our goal is to fill in all the slots in two sweeps:
(i) a forward sweep to fill in all the *values*

(i) a reverse sweep (back propagation) to fill in all the partial derivatives,

The last numbers we compute in the reverse sweep will be the desired components of the gradient of y.
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Reverse sweep will fill in the partial derivatives of y



Forward sweep to fill in the values:
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For the reverse sweep to fill in the partial derivatives ofy, we need to develop some rules ...

Let's look at multiplication.
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Exercise for you:

Find the back prop rules for the operations of@) @} @nd branching. /X =
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Finally let's apply our back prop rules to compute the gradient of our example expression
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Let's check our reverse-mode AD results with symbolic differentiation:
e
import sympy as sp
X,W = sp.symbols('x,w')
y = X**2/(x-w)
dydx = sp.diff(y, x)
dydw = sp.diff(y,w)
print('partial derivatives of y wrt x,w :') . .
display(dydx) xk = sin(xi)
display(dydw)
values = {x:3,w:13} dv/dxi =
print(f'value of y at x={values[x]},w={values[w]}: {y.subs(values)}\n') y/dxi =
print(f'partial derivatives at x={values[x]},w={values[w]}:',\ dy/dk"dxk/dxi
f'{dydx.subs(values)}, {dydw.subs(values)}') = "A" * cos(xi)

partial derivatives of y wrt x,w :
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value of y at x=3,w=13: ‘—9/10? ? I\
partial derivatives at x=3,w=13: -69/1é§><9/100> .




Quadrature

= numerical evaluation of definite integrals

The word quadrature comes from
real-world estimating of
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Crude estimate:
count the "quadrats".
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why not just find a formula F such that F' = f, and use J(f) = F(b) - F(a)?

We will when we can, but a closed formula for such an F frequently
(1) does not exist, or (ii) is a pain to obtain.

We will sample f at m+l points %K., %,,... , Xm,
and devise a '"quadrature rule"

@({) = q/({(xo))_f(x),,.,,_f&m)) P T(.F) as accurately as possible.

We would really like Q(cf) = ¢ Q(f) for any constant c
and Q(f+g) = Q(f)+Q(g)
to mirror the corresponding properties required of an integral.

This forces q to be a linear combination of its arguments (proof?):
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Based on our experience with interpolation, it seems likely that some placements

of the x_j will be better than others. But supposed we've decided on the {x_j}.
Maybe uniformly space, maybe not.

Then we need to decide on the weights {NJ} e Wl“‘tmlb»v\a) SﬁJS .



What principle(s) should we use to constrain the weights?
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Example: m=0, one sample of f:
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Seems like it is highly desirable to get the integral of a constant function
exactly correct:
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So our one-point quadrature rule is: &(—g—) - <b-——o\>. I'§683> ,

What if we have more than 1 sample point?

What does @(1): Y‘ dictate?
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W iS, we n2ed ZEOCJ' z \ . That's 1 constraint on m+1 variables.
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We need m additional constraints.

How about requiring the rule to integrate linear functions correctly?

Q(L)= L

That provides one more (linear) constraint
on the weights.

Continuing the theme, we could require that Q gets the exact integral
for all polynomials of degree m or less:

R(p) = S} ¥ pe -

This is m+1 (linear) constraints on the m+1 variables 2055-

Such a Qis said to have "polynomial degree m".



We can arrive at the same quadrature rule Q in another way ...

Let F(:F)e P"'\ be the unique polynomial of degree at most m
SRS

Then define Q(f) = Yp(f). (This integral is easy to do symbolically
«  because pis a polynomial.)

that interpolates the gata

We could write p(f) in terms of the Lagrange polynomials:
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We can show that the two definitions of Q are equivalent. which can be computed
symbolically exactly.

Another example:

(m+1)-point rule of polynomial degree m with X¢= &, Xm=b and the others uniformly spaced
in between.

This is called the "closed Newton-Cotes rule" of degree m.

Again note that once the {x_j} are chosen, the requirement to be of polynomial degree m
fixes the weights.

If the m+1 nodes are uniformly spaced with the endpoints a,b omitted, this is called the
"open Newton-Cotes" rule of degree m.
Deriving the weights exactly using sympy

# derive weights for quadrature rule by integrating Lagrange form of interpolating polynomial
import numpy as np

= sp. bols('x'
XX _sp sym %ix) [m, B]
a,b=0,2 _ -
H=ba a— M= 3412 & spnplt pide 33,3
m=3
x = [sp.Rational(j*H,m) for j in range(m+1)] S?‘\i;: [0, 2/3, 4/3, 21
display(x) 3 2
- 2
alpha =] 27x3  45x2 9 .
for j in range(m+1): -{, (K) - l—z - Tx + Tx @,8,2 P&OHM(J&
Lj=1 3 ) , c
for i in range(m+1): {z('()= —232 + 9% - %x _tLL‘ Pb\\“h/ o
A . .
.|_f|!. jo L *= (xx-x[i])/(X[jI-x[i]) ( {)_ o 902 % 'ﬁ\-ts st
Lj = Lj.expand() 3(X .‘W -5 t3
display(Lj) PR
alpha.append(sp.integrate(Lj,(xx,a,b))/H) ?D(JS" [1/8, 3/8, 3/8, 1/8]
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Let's "funcify" the above code and look at some other concrete examples ...

closed Newton-Cotes on several intervals Copyable code:
open Newton-Cotes def linspace(a,b,n): # exact rationals with sympy
. h = b-a
randomly chosen pOIntS return [a + sp.Rational(i,n-1)*h for i in range(n)]
def get_alphas(a,b,x):
def linspace(a,b,n): # exact rationals with sympy H = b-a
h =b-a alpha = []
return [a + sp.Rational(i,n-1)*h for i in range(n)] for j in range(m+1):
. Lj =1
def ﬂeﬁfﬁ}g"as‘a"’"" for i in range(m+1):
alpha = [] if it=j: Lj *= (xx-x[1])/(x[j1-x[i])
for j in range(m+1): Lj = Lj.expand()
Lj=1 #display(Lj)

for i in range(m+1):
if it=j: Lj *= (xx-x[1]1)/(x[j]-x[i])
Lj = Lj.expand()

alpha.append(sp.integrate(Lj, (xx,a,b))/H)
return alpha

#display(Lj)
alpha.append(sp.integrate(Lj, (xx,a,b))/H) m =3
return alpha
m=3 a,b = 0,2
x = linspace(a,b,m+1)

a,b=0,2 print( f'For the interval [{a}, {b}] with the {m+1} points {x},\nthe alphas
x = linspace(a,b,m+1) get_alphas(0,2,x) )
print( f'For the interval [{a},{b}] with the {m+1} points {x},\nthe alphas are',

get_alphas(0,2,x) ) a,b = 0,100
a,b = 0,100 x = linspace(a, b, m+1)
x = linspace(a,b,m+1) print( f'For the interval [{a},{b}] with the {m+1} points {x},\nthe alphas
print( f'For the interval [{a},{b}] with the {m+1} points {x},\nthe alphas are', get,alphas(a, b,X) )

get_alphas(a,b,x) )

For the interval [0,2] with the 4 points [0, 2/3, 4/3, 2],

the alphas are [1/8, 3/8, 3/8, 1/8]

For the interval [0,100] with the 4 points [0, 100/3, 200/3, 100],
the alphas are [1/8, 3/8, 3/8, 1/8]



