Machine learning, reverse-mode AD aka back-propagation

Reverse mode AD contd

The above process is called "forward-mode" AD.
It is accurate to machine epsilon, and easy to program.
Butitis not optimally efficient.

Machine learning - training a neural network - involves minimizing a real-valued function
called the "loss", which is a measure of how poorly the network is performing the desired task.

The network is characterized by a large set of parameters called "weights",

(ﬁ)o, bo,, 2,

/ wioooooooeo
!GSS 3 = N(ES) . Want to minimize y with respect to Ej,

The standard method is to move repeatedly in the direction of steepest descent.
That direction is
Because of the huge dimension of) , we need to be as efficient as possible (as well as accurate).
"Reverse-mode AD" or "back-propagation” is more efficient than forward-mode AD.
In the diagram below,
the upper slots are for the *values* of initial, intermediate, and final quantities in the calculation,
the lower slots are for the *derivative of the output value y with respect to the quantity*.
Our goal is to fill in all the slots in two sweeps:
(i) a forward sweep to fill in all the *values*

(i) a reverse sweep (back propagation) to fill in all the partial derivatives,

The last numbers we compute in the reverse sweep will be the desired components of the gradient of y.

Example: S = x,gx w—& K= 5 ,0= . Smk Cj)é'j)6

representing input 6% L)
such as an image g2

/@ = /Z'

\Q %
representlng weights \é—lj l{l

in the network
SZ-

%‘c"

Reverse sweep will fill in the partial derivatives of y

Forward sweep to fill in the values:

13::_

representing input

¥ —W

such as an image g2

LB &= -

\@ }k_.
) :_

representing weights
in the network

13

NG ok 7<—:'5,,,\)—=\’5'S-'22k cj)étj)
A=

For the reverse sweep to fill in the partial derivatives ofy, we need to develop some rules ...

Let's look at multiplication.

@\d‘uf\ G-VL(L ;S
E)"ﬂ = é{) ’AXK

6><(Axx 1O
— A B(XiKD
JX,

S'\m‘ckmrb~
éﬂ = AXL
K,

Exercise for you:

Find the back prop rules for the operations of@) @} @nd branching. /X =

O]
éﬂ = Eﬂ A><v< 6?“\, X 6)‘2’
A S X 3 A X A XK
S
A ‘/b/:‘)x @ A A
_é‘j &K P\ (XJ XJ
AX‘SZ{ ’ A -A _—
/x“x\, Eg ﬁﬂ 67<K/ 2\ ‘)
3= YD~ Al laedl S o AR
&% &2&:. A GKJ X< AKJ
X, = X ‘
A, T b e AR A
2 X A W % AX; 3§
0 Al -3 % = A (H)- A (Z)
)(J) A%« 6?% § 3
£ A
N
Branching - y depends on ¥,via multiple paths
X
A . y
_5_3 = 3’,‘1 K+ 3 E‘f‘_‘ + M_t
X X A%, I &% Kk W S ¥
/ 5 = A¥ + Bdxe +C¥
X ¢ O, K,
ot S
cadn C

Finally let's apply our back prop rules to compute the gradient of our example expression

=X gt k=%, 0= 10, S=k :
3= 5 42,8

>< J/ back-propagation of partial derivatives of output
representing input <
such as an image 3

Q_> 3 /@; Kq /Z
e ErEl RO

)

representing weights
in the network

o
dZ- =
=113 O 2
q
—)
o0 0
s
| ((~l0)1>
—
Let's check our reverse-mode AD results with symbolic differentiation:
e
import sympy as sp
X,W = sp.symbols('x,w')
y = X**2/(x-w)
dydx = sp.diff(y, x)
dydw = sp.diff(y,w)
print('partial derivatives of y wrt x,w :') . .
display(dydx) xk = sin(xi)
display(dydw)
values = {x:3,w:13} dv/dxi =
print(f'value of y at x={values[x]},w={values[w]}: {y.subs(values)}\n') y/dxi =
print(f'partial derivatives at x={values[x]},w={values[w]}:',\ dy/dk"dxk/dxi
f'{dydx.subs(values)}, {dydw.subs(values)}') = "A" * cos(xi)

partial derivatives of y wrt x,w :
x2 2x

+
(—w+x)? —w+x

x2

(—w + x)?

value of y at x=3,w=13: ‘—9/10? ? I\
partial derivatives at x=3,w=13: -69/1é§><9/100> .

Quadrature

= numerical evaluation of definite integrals

The word quadrature comes from
real-world estimating of

14

a'j' YMA = area of region R
Z

Crude estimate:
count the "quadrats".

area of stone=6t09

4 A 7R , . .
Start with 1D: —f [&,b]"’nz.To approximate J—(—f) = [;‘F = Y“'(:c““’b(]

why not just find a formula F such that F' = f, and use J(f) = F(b) - F(a)?

We will when we can, but a closed formula for such an F frequently
(1) does not exist, or (ii) is a pain to obtain.

We will sample f at m+l points %K., %,,... , Xm,
and devise a '"quadrature rule"

@({) = q/({(xo))_f(x),,.,,_f&m)) P T(.F) as accurately as possible.

We would really like Q(cf) = ¢ Q(f) for any constant c
and Q(f+g) = Q(f)+Q(g)
to mirror the corresponding properties required of an integral.

This forces q to be a linear combination of its arguments (proof?):

Q@): élf\h‘?ﬁ(j) C;._””;“ﬂ (g—a)és(x\\{(ﬁ-) Factoring out (b-a)

from the wts makes

is b the ¢ 's inglependent
l\“""ﬂ {5 of thg interval length.

It remains to choose the {X\‘-S and the ?D(i}o get an accurate approximation of f'F

.

a

Based on our experience with interpolation, it seems likely that some placements

of the x_j will be better than others. But supposed we've decided on the {x_j}.
Maybe uniformly space, maybe not.

Then we need to decide on the weights {NJ} e Wl“‘tmlb»v\a) SﬁJS .

What principle(s) should we use to constrain the weights?

fo—

Example: m=0, one sample of f:

(%y{ = (<) t % g

@(’9\‘: wo'?(K')\ = (5“0\>0<o'(:(‘<o>

What's a good choice for (X ?

o~
—
P ™

Seems like it is highly desirable to get the integral of a constant function
exactly correct:

Q1) =EA! TTE) = [14 - G-

A

This cggmires 6, =1 .
So our one-point quadrature rule is: &(—g—) - <b-——o\>. I'§683> ,

What if we have more than 1 sample point?

What does @(1): Y‘ dictate?

™M s ! h
RO) = (-a) o o) &' ()3 ogl =)= (1
J' <0 o J=°

W iS, we n2ed ZEOCJ' z \ . That's 1 constraint on m+1 variables.

\‘J':d

We need m additional constraints.

How about requiring the rule to integrate linear functions correctly?

Q(L)= L

That provides one more (linear) constraint
on the weights.

Continuing the theme, we could require that Q gets the exact integral
for all polynomials of degree m or less:

R(p) = S} ¥ pe -

This is m+1 (linear) constraints on the m+1 variables 2055-

Such a Qis said to have "polynomial degree m".

We can arrive at the same quadrature rule Q in another way ...

Let F(:F)e P"'\ be the unique polynomial of degree at most m
SRS

Then define Q(f) = Yp(f). (This integral is easy to do symbolically
« because pis a polynomial.)

that interpolates the gata

We could write p(f) in terms of the Lagrange polynomials:

QE) = Y;G&)c«)«k - Hf%{%) b6 Z{m—) [G&)A&
¢ A \ L//

:b{)\]

(]

We can show that the two definitions of Q are equivalent. which can be computed
symbolically exactly.

Another example:

(m+1)-point rule of polynomial degree m with X¢= &, Xm=b and the others uniformly spaced
in between.

This is called the "closed Newton-Cotes rule" of degree m.

Again note that once the {x_j} are chosen, the requirement to be of polynomial degree m
fixes the weights.

If the m+1 nodes are uniformly spaced with the endpoints a,b omitted, this is called the
"open Newton-Cotes" rule of degree m.
Deriving the weights exactly using sympy

derive weights for quadrature rule by integrating Lagrange form of interpolating polynomial
import numpy as np

= sp. bols('x'
XX _sp sym %ix) [m, B]
a,b=0,2 _ -
H=ba a— M= 3412 & spnplt pide 33,3
m=3
x = [sp.Rational(j*H,m) for j in range(m+1)] S?‘\i;: [0, 2/3, 4/3, 21
display(x) 3 2
- 2
alpha =] 27x3 45x2 9 .
for j in range(m+1): -{, (K) - l—z - Tx + Tx @,8,2 P&OHM(J&
Lj=1 3) , c
for i in range(m+1): {z('()= —232 + 9% - %x _tLL‘ Pb\\“h/ o
A . .
.|_f|!. jo L *= (xx-x[i])/(X[jI-x[i]) ({)_ o 902 % 'ﬁ\-ts st
Lj = Lj.expand() 3(X .‘W -5 t3
display(Lj) PR
alpha.append(sp.integrate(Lj,(xx,a,b))/H) ?D(JS" [1/8, 3/8, 3/8, 1/8]

QU 20+ 243y 259 He)
EE—— T E | |

Let's "funcify" the above code and look at some other concrete examples ...

closed Newton-Cotes on several intervals Copyable code:
open Newton-Cotes def linspace(a,b,n): # exact rationals with sympy
. h = b-a
randomly chosen pOIntS return [a + sp.Rational(i,n-1)*h for i in range(n)]
def get_alphas(a,b,x):
def linspace(a,b,n): # exact rationals with sympy H = b-a
h =b-a alpha = []
return [a + sp.Rational(i,n-1)*h for i in range(n)] for j in range(m+1):
. Lj =1
def ﬂeﬁfﬁ}g"as‘a"’"" for i in range(m+1):
alpha = [] if it=j: Lj *= (xx-x[1])/(x[j1-x[i])
for j in range(m+1): Lj = Lj.expand()
Lj=1 #display(Lj)

for i in range(m+1):
if it=j: Lj *= (xx-x[1]1)/(x[j]-x[i])
Lj = Lj.expand()

alpha.append(sp.integrate(Lj, (xx,a,b))/H)
return alpha

#display(Lj)
alpha.append(sp.integrate(Lj, (xx,a,b))/H) m =3
return alpha
m=3 a,b = 0,2
x = linspace(a,b,m+1)

a,b=0,2 print(f'For the interval [{a}, {b}] with the {m+1} points {x},\nthe alphas
x = linspace(a,b,m+1) get_alphas(0,2,x))
print(f'For the interval [{a},{b}] with the {m+1} points {x},\nthe alphas are',

get_alphas(0,2,x)) a,b = 0,100
a,b = 0,100 x = linspace(a, b, m+1)
x = linspace(a,b,m+1) print(f'For the interval [{a},{b}] with the {m+1} points {x},\nthe alphas
print(f'For the interval [{a},{b}] with the {m+1} points {x},\nthe alphas are', get,alphas(a, b,X))

get_alphas(a,b,x))

For the interval [0,2] with the 4 points [0, 2/3, 4/3, 2],

the alphas are [1/8, 3/8, 3/8, 1/8]

For the interval [0,100] with the 4 points [0, 100/3, 200/3, 100],
the alphas are [1/8, 3/8, 3/8, 1/8]

