Day 22. Quadrature, cont'd

)
Recall that we wish to accurately approximate rjc
A

in the common situation where we do not have access to an antiderivative F, F' = f,
hence cannot used the Fund. Thm. of Calculus.

We will use a "quadrature rule" "
M
QM- 40 $6) = S0 = (-0 L fox)
J=e =
A quadrature rule is said to be "of polynomial degree m" if ’

R = V\:P ¥ pe R

o
M
If the m+1 5*53;0 are already chosen and distinct, "
then the requirement of Q being of polynomial degree m consitutes m+1 conditions on the m+1 weights Z‘ofs
and we can determine those weights in this way. J |=0

@(l\ re’lﬁ_.-: g\l‘lab((b_n)zloc\-l z h-a
2 v
b . 2 Lt
&(K\ = Cxo& (b*dbfx\]‘x\, B %——.i
o J
3

: P N o
&(Kmx = ﬁK‘MOk (b—é\)dzx\l 0(.) ’.;_, rt\

m+1 linear equations in m+1 variables {o‘ﬁ..
Since the matrix is non-singular for distinct {x_j},
with m+1 sample points we can achieve polynomial degree at least m.

O——

Let's look at some examples ...

closed Newton-Cotes x = [-1 0 1]

alpha = (1/6, 2/3, 1/6) m=38
closed Newton-Cotes x = [-1 -3/4 -1/2 -1/4 0 1/4 1/2 3/4 1]

quadrature rule has polynomial degree m 2 by constructi alpha = (989/28350, 2944/14175, -464/14175, 5248/14175, -454/2835, 5248/14175, -464/14175, 2
quadrature rule actually has polynomial degree m+l = E? True 944/14175, 989/28350)

uadrature rule actually has polynomial degree m+2 = 4? False
d Y poty 9 quadrature rule has polynomial degree m 8 by construction

quadrature rule actually has polynomial degree m+l = 97 True

07 quadrature rule actually has polynomial degree m+2 = 107 False

03
02
01
00

-01

0 -100 -075 -050 -025 000 025 050 075
-100 -0.75 -0.50 -025 000 025 050 075 100 *

=18
closed Newton-Cotes x = [-1 -8/9 -7/9 -2/3 -5/9 -4/9 -1/3 -2/9 -1/9 0 1/9 2/9 1/3 4/9 5/9 m=0

2597{5]; open Newton-Cotes x = [0]

alpha = (203732352169/15209113920000, 6162434073/50697046400, -214182958293/1013940928000, 1 alpha = (1,)

61769065751/158428270000, -176535061191/63371308000, 308573105553/45265220000, -23648622603

3/18106088000, 664657884333/31685654000, -69854658519033/2534852320000, 11533183608517/38022 quadrature rule has polynomial degree construction
7848000, -69854658519033/2534852320000, 664657884333/31685654000, -236486226033/18106083000, i ?
308573165553/45265220000, -176535961191/63371308000, 161769065751/158428270000, -21418295829 quagrazu:e ru]l.e achaHy nas po{ynom;ali gegree m:; %'7 "I:'r%e
3/1013940928000, 6162434073/50697046400, 203732352169/15209113920000) quadrature rule actuatly has potynomial degree m+z = 27 False

quadrature rule has polynomial degree m = 18 by construction 10
quadrature rule actually has polynomial degree m+l = 19?7 True
quadrature rule actually has polynomial degree m+2 = 207 False

08

06

00
-100 -075 -050 -025 000 025 050
x

-30
-100 -075 -050 -025 000 025 050 075 100
x

m=2
Large alternating positive and negative open Newton-Cotes x = [-1/2 @ 1/2]
weights can lead to catastrophic loss alpha = (2/3, -1/3, 2/3)
of significance due to subtraction of quadrature rule has polynomial degree m

. quadrature rule actually has polynomial degree m+1
near equals' quadrature rule actually has polynomial degree m+2 ? False

-100 -0.75 -050 -025 000 025 050 075
X

We see the results with uniformly spaced nodes are not terribly satisfactory,
especially in regard to having negative weights.

But who said the nodes should be uniformly spaced?
How about considering node locations to be another set of degrees of freedom?

Then we'd have 2m+2 variables: ?
perhaps we could then achieve polynomial degree 2m+1 /

Turns out this IS possible, and the corresponding optimal rules are called Gaussian quadrature.

Example: the midpoint rule, aka 1-point open Newton-Cotes, is also the 1-point Gaussian rule:
- -+ - N . =3 -

X, = “.__Z_b , 0= has]DBIGMGMML o(aam 2:041 = .

M:O

And the 4-point Gaussian rule has degree 2(3)+1 = 7. Wow!!

Let's develop the 2-point (m=1) Gaussian quadrature ruleYon [-1,4],
by requiring that it has polynomial degree 2m+1 = 3.

G5 = w, eyt f)

It seems reasonable to guess that by symmetry, X,= =% aund Lo, =9,

Then, requiring exact results for each element of the monomial basis for P_3,
the constraints are:

GQ_G) o w,'(+CI\)2'(= 2:,0, vga! {‘[o(x ZZ‘%/(A(:() L= 3

Se Gy C—F) = ,j:(—x,)+'.§:(x,>. ,
G,(= —>+5=0 = fxo(z=0 Vo rea,arélL(SS%. X,

—

=1

¢ (A 7 nad A 73 2} 7__{_
G, (&)= (%) + > = 2 = (e = 2 D X) 4= =

6 ()= (D) 4@E)]

_IT\uS

And 51(@: ~><,3-+ ><,2 - o == ?;304%: O \/@

Let's compare with the inferior 2-point rule called the "trapezoid rule":

T = -F(—l) + .g'(l) :

Let's test the 2-point Gaussian quadrature rule we just derived

(to integrate a non-polynomial function)

from numpy import sqrt, exp

def G2(f):
return f(-1/sqrt(3)) + f(1/sqrt(3))

def T(f):
return f(-1) + f(1)

myf = exp # here is the function we want to integrate

e = exp(1)
exact = e - 1/e

gauss_approx
trap_approx

= G2(myf)
= T(myf)
gauss_error
trap_error

(gauss_approx-exact) /exact
(trap_approx -exact)/exact

print(trap_error)

0.31303528549933135

print(gauss_error)

-0.003278714921135362

Gauss is 100 times better than Trapezoid in this example.

How to obtain the Gauss rules for larger m?

Ingredients are a set of polynomials (p0, p1, p2, ...) with the following properties:

(1) pn has degree n

(2) piis orthogonal to pj if i does not equal j, with respect to the inner product (PL 'P) = D"P
(3) pn has n distinct roots in [-1,1])1 J

We could develop such a set as follows (choose some basis and orthogonalize it using Gram-Schmidt):

Sﬂfj’ (,q_‘(’ 'Pd(sc) =

_ b
(K) = X 2
nS s<Mhesonad fo D, S
0,63 %/mfz, < e r \/ //,b P
— P2 /

3

etc., obtiaining the "Legendre polynomials".

A convenient representation of the Legendre polynomials (I claim) is

y\(ﬂ\
P. (><> — A (><)

Does this satisfy properties (1),(2),(3) ?

(1) pnis of degree n ? Ll/és :}(5 O~ P%ﬂm‘-"/k % W 2/\ Al:g:”(V\"’_HM.QS .

2) Orthogonality ? , (L> (J)

P = (oo o 4 £l b

=0 beawsc (xzvl)a hadg a MVLH'\-PQ rao‘{ 4,0«:&:0
’ (1-9) (4! of x=%
- Y KB 2y

: \'j-i—l +mes o o
(L- +\)) -
f(x é’i_.'/)\l,__, = O \/@D

(3) n distinct roots in [-1, 1] ? ... Yes: Google it > Stack Exchange

So what ? We will show that if

we use the roots of p (m+1) as the nodes, and
choose the weights to obtain degree m

we will in fact have a rule of degree 2m+1 - the Gauss(-Legendre) rule.

[et T be & piy 4 deg Zersl .
Cﬂmnbmﬂsa?vess Pas - SP,.M.'*‘(R
e S,Rarﬂ%nﬂ&) J«SS: m < mt | OLOYZ<M+(

Observation (1)
G(P) = G(R) Why?
G(P) = G(S p,,) + G(R)
IO becrus sample pricks § G e precsely Tle zewms § Py
Observation (2)
cR)= (R 7
L has ohﬂfrv\ and G—(p)-‘-y? v PG‘PM .
Observation (3)
M= [Bhy?
YP = SS?M‘ + SK

\.’-Y—’)

O beawmse S} i dajm, is Mf‘wgma){ +o Paet

Summarizing, (3)

G(ff)il) G(Ta)(—_%.) R = fl’ /@

F rk M:-‘, VVH'l'C'Z) 2M+l: 3
Pey= 4+ tx?rBa §

P, G)z 2oL X+ & = %)
> 2\ 3 Z
x___,s)X + Gy +3n’+§
&3 '_éx
L 4 125 +S
Po)- o) BE + Lor B pa S %
> S -
}aj_z/z ‘ > %x 4—'% = flz(x\

i

Error bound for quadrature rules

Recall Theorem 4.6 p215: (ne = _
T4 ,gec "'Ta,b] Twom K6 = f?(x) P(k)~ 'E,Ki) I(—(""‘J) .
It follows that

[E@)|=|a®)-f5] = Mw [T ;)b
<M+) ¢

< HM/J‘M I f -][Y(Z

Thus E(‘f)"—)O o H— 0.

and we can reduce "H" by dividing our domain [a,b] into small subintervals or "panels",
applying the rule to each panel and adding the results.

In practice, though, ... we estimate our error numerically, as follows ...

Suppose we have two rules, such as G7 and "K15",

where deg(K15) >> deg(G7).

Then G:, (_D - KK (_F) is a reasonable estimate of the error in G7(f).

K in K15 above stands for Kronrod.

The (2m+1)-point Kronrod rule is the (2m+1)-point rule of maximal polynomial degree
that re-uses the sample points of the m-point Gaussian rule.

Let's test the 7,15-point Gauss-Kronrod pair of rules

from numpy import *
nodes and weights for the interval [-1,1] copied-and-pasted from Wikipedia

knodes = array([

-0.9914553711208126392,
-0.9491079123427585245,
-0.8648644233597690728,
-0.7415311855993944399,
-0.5860872354676911303,
-0.4058451513773971669,
-0.2077849550078984676,

.2077849550078984676,
.4058451513773971669,
.5860872354676911303,
.7415311855993944399,
.8648644233597690728,
.9491079123427585245,
.9914553711208126392])

gnodes = knodes[1::2]

kweights = array([
022935322010529224964,
06309209262997855329,
10479001032225018384,
14065325971552591875,
16900472663926790283,
1903505780647854099,
20443294007529889241,
2094821410847278280,
20443294007529889241,
1903505780647854099,
16900472663926790283,
14065325971552591875,
10479001032225018384,
06309209262997855329,
022935322010529224964])

COOOOPOOOPOODOO DD

gweights = array([

.12948496616886969327061143267908201832858740225995,
.2797053914892766679014677714237795824869250652266,
.3818300505051189449503697754889751338783650835339,
.4179591836734693877551020408163265306122448979592,
.3818300505051189449503697754889751338783650835339,
.2797053914892766679014677714237795824869250652266,
.1294849661688696932706114326790820183285874022599

def g7(f,a,b):
global gnodes,gweights
center = (a+b)/2.
halfwidth = (b-a)/2.
nodes = center + halfwidth*gnodes
weights = halfwidth*gweights
return dot(weights, f(nodes))

kis5(f,a,b):

global knodes, kweights

center = (a+b)/2.

halfwidth = (b-a)/2.

nodes = center + halfwidth*knodes
weights = halfwidth*kweights
return dot(weights, f(nodes))

test them
def myf(x): return sin(x) #x**10
def myF(x): return -cos(x) # for this example we can provide an antiderivative to obtain the integral exactly

a,b = 2,5 # randomly chosen interval

exact = myF(b) - myF(a)
print('Exact :',exact)

Gest = g7(myf,a,b)
print("Gauss 7 :", Gest, ', error:', abs(Gest-exact)/exact)

Kest = k15(myf,a,b)
print("Kronrod 15:", Kest, ', error:', abs(Kest-exact)/exact)

Exact -0.6998090220103687
Gauss 7 -0.6998090220106843 , error: -4.510322044637135e-13
Kronrod 15: -0.6998090220103687 , error: -0.0

Wow!!

Adaptive quadrature

How to attain an integral approximation with error tolerance & 2

Apply first directly to [a,b] and obtain error estimate. |

If error estimate > $,

then apply rule separately

on rd, Q;_'P] with tolerancé , 4

and on [a__ﬂn , b with tolerancé ,
Z

and add the results.

Do this recursively until total error estimate < §' .

Adaptive quadrature with G7K15

import numpy as np
from gk import g7,k15
import matplotlib.pyplot as plt

count = 0

def runge(x):
global count
plt.plot(x, -count*np.ones_like(x),'.') # plot the points where we've been asked to evaluate the function
count += len(x)
return 1/(1+12%x*%*2)

runge

F(x): # antiderivative of Runge exact 0.896902014293353
s = np.sqrt(12) approx 0.8969020142933529 , error estimate 2.647744277426301e-12

actual error -1.1102230246251565e-16 gccuUrate to machine precision!

return np.arctan(s*x)/s

quad(f, a, b):
) 10 1

’

)
error_estimate = 200*abs(g-k)**1.5

return k, error_estimate 081

‘é/‘/ Integrand (Runge function)

adaptive(f, a, b, tol): 061 has a big spike in a small
i,e = quad(f, a, b) . .
if e <= tol: region of our interval [-50,10].

return i, e 041
else:

midpt = (a+b)/2 021

il, el = adaptive(f, a , midpt, tol/2)

i2, e2 = adaptive(f, midpt, b , tol/2)

return i1+i2, el+e2 0.0 1

-40 -30 -20 -10 10

exact = F(b) - F(a) Adaptive G7K15 quadrature: where f is sampled
xx = linspace(a,b,2000); plt.figure(); plt.plot(xx,f(xx))
print("exact ", exact) s s
plt.figure(figsize=(15,8)) : e e .
i,e = adaptive(f, a, b, le-10) del o % o 8
print("approx", i, ", error estimate", e) de8eleleleled
print("actual error", i-exact) 1 FX4

plt.title('Adaptive G7K15 quadrature: where f is sampled')
plt.savefig('temp.pdf')

Seleloalotols
eleieied
e ieieiens

10

Closing question:

"How is it that the Gaussian rules are so remarkably accurate for non-
polynomial functions?"

Consider the 2-point (m=1) Gaussian rule. There is a unique polynomial of degree 1 or less that interpolates the sampled

values of the function f for which we want to evaluate f_ll

But there is an entire 2D family of functions within P that interpolate the data, and if we choose the Gaussian sample points
they all have the same integral (because we know the 2-point Gauss rule gets the integral exactly for all p € Pj).

Thus there is an entire 2D family of interpolating cubics with the same integral, and it is plausible that some of them
approximate f quite well, yielding an accurate approximation of its integral. lllustration below.

