
First, a closing question on quadrature:

How is it that the Gaussian rules are so accurate for non-polynomial functions?

Let's take a look at an example ...
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Consider the 2-point (m=1) Gaussian rule. 
There is a unique polynomial of degree 1 or less that interpolates the sampled values of the function f 
for which we want to evaluate 

But there is an entire 2D family of functions within P_3 that interpolate the data, 
and if we choose the Gaussian sample points they all have the same integral
(because we know the 2-point Gauss rule gets the integral exactly for all p in P_3).

Thus there is an entire 2D family of interpolating cubics with the same integral, 
and it is plausible that some of them approximate f quite well, 
making it less surprising that we get an accurate approximation of its integral. 

Illustration below.



All these cubic (2m+1=3) functions interpolate the data,
and because the sample locations are the Gauss points
they all have the same integral,
whose value is given exactly by the Gauss rule.



Ch 8. Root-finding in multiple dimensions
a.k.a. solving systems of nonlinear equations

We seek a zero of 

that is find 

Our method will be iterative, starting with an initial guess           , and generating        
k = 0,1,2,3,..., hopefully converging to a root.



Newton's method

At         linearize F, and use the root of the linearization as         

We use exactly the same idea as in the 1-variable case (Ch 2), namely:

In the n=1 case, the linearization is

Recall

We can view f '(x) as a number "a" such that 

This latter idea we can generalize to         as follows. 

define its Fréchet derivative  F'(x) as a (the) linear map A such that

if such a map exists.

In particular, the limit must be zero for the choice h = e   , the jth standard basis vector for

For this choice of h, the ith component of the LHS above is  

                                                              This is 

Thus if the Frechet derivative exists, the i,j element of its matrix is  

Thus when the Frechet derivative exists, its matrix is ...

||h||



the "jacobian matrix" of partial derivatives.

Newton's method is to approximate F near x by

Thus we solve the linear system

or more specifically,

Let's implement it in code and see what happens ...

which we can obtain by one or more of the 3
differentiation methods we discussed recently.

If our initial guess were 

[Note to self: try x0 = [.1,.1] among others.]

Note: having partial derivatives at a point
does NOT imply the Frechet derivative exists
there

But if partial derivatives exist and are continuous
then the F-derivative does exist (and its matrix
is the jacobian).

(k)



Accurate to machine precision in 7 iterations.

Initial guess closer to root (in 2-norm),
but 7 iterations still required.

Even closer initial guess,
only 5 iterations required.

A yet closer initial guess,
this time from Joel for the 3rd quadrant root,
requires 5 iterations for the desired accuracy.



intitial guess [2,1]

Joel's starting
guess

An initial guess
close to the origin
(where, we oberved,
the jacobian is 
singular).

Newton jumps far
from the root before
coming back and 
converging.
Guessing it took
about 12 iterations
in this case.



Example 2  :  a toy suspension bridge

What is the equilibrium configuration of
this "bridge"?

Let us enumerate
the degrees of freedom (variables)
the constraints



Thus we have 3n+1 nonlinear equations in 3n+1 variables 
- a problem that should be solvable with the multidimensional Newton's method.


