Day 23

First, a closing question on quadrature:

How is it that the Gaussian rules are so accurate for non-polynomial functions?

Consider the 2-point (m=1) Gaussian rule.
There is a unique polynomial of degree 1 or less that interpolates the sampled values of the function f
for which we want to evaluate Jllf.

But there is an entire 2D family of functions within P_3 that interpolate the data,
and if we choose the Gaussian sample points they all have the same integral
(because we know the 2-point Gauss rule gets the integral exactly for all p in P_3).

Thus there is an entire 2D family of interpolating cubics with the same integral,
and it is plausible that some of them approximate f quite well,
making it less surprising that we get an accurate approximation of its integral.

I| | ustra tion be | OoW. Derive a parametrization of 2D subset of P; where the 2-point interpolation conditions are satisfied:

import sympy as sp

x1 = sp.symbols('x 1')

y0,yl = sp.symbols('y 0,y 1')

a = sp.symbols('a 0:4")

x0 = -x1

interpolation conditions

eqd = sum([x0**j*a[j] for j in range(4)]) - yo
eql = sum([x1**j*a[j] for j in range(4)]) - y1
display(eq0)

display(eql)

let the family be parametrized by the quadratic and cubic coeffs a 2, a 3
sol = sp.solve((eq0,eql),(al0],a[1l]))
display(al[0])

display(sol[a[0]])

display(a[l])

display(sol[a[1l]])

2 3
ap — a1X| + axX7 — azxy —)o

3

ap + a1x; + X3 + a3x3 — y;

—2a3x} — yo + yi
2X|

import numpy as np
import matplotlib.pyplot as plt
%config InlineBackend.figure_format = 'retina’

x1 = 1/np.sqrt(3) # Gaussian sample point (try anything else and the integral will vary)
x1

X0 = -

= np.array([x@,x1])
= np.random. rand(len(x))

np.array([(y[0]+y[1])/2,
(y[11-y[e])/2/x[1],

0])
np.array([-x[1]**2,0,1,0])
np.array([0, -x[1]**2, 0, 1])

bl =
b2 =
def p(a,x):

return np.sum([a[j]*x**j for j in range(len(a))],axis=0)

def intp(a): # exact integral over [-1,1]
return sum([a[j]*(1)**(j+1)/(j+1) for j in range(len(a))]) \
-sum([a[j]*(-1)**(j+1)/(j+1) for j in range(len(a))])

xx = np.linspace(-1,1,5000)
nr,nc = 3,6
plt.figure(figsize=(nc*3,nr*3))
for k in range(nr*nc):
3028194137692868 plt.subplot(nr,nc, k+1)
3028194137692866 plt.plot(x,y, 'ko")
3028194137692866 ¢ = np.random. randn(2)
302819413769287 a = b0 + c[0]*b]l + c[1]*b2 # coefficients of an interpolating cubic
3028194137692868 plt.plot(xx,p(a,xx))
3028194137692866 exact_integral= intp(a)
3028194137692863 print(exact_integral)
3028194137692868 plt.xlim(-1,1); plt.ylim(0,2)
3028194137692866 .suptitle(’ If x0, x1 are the Gaussian points, then all these cubics have the same $\\int_{-1}"{1}$"')
3028194137692874 -savefig("temp.pdf')
3028194137692868
3028194137692868
3028194137692868
3028194137692866
3028194137692868
3028194137692868
3028194137692868
3028194137692866

e

If x0, x1 are the Gaussian points, then all these cubics have the same f_ll

All these cubic (2m+1=3) functions interpolate the data,
‘ and because the sample locations are the Gauss points
: they all have the same integral,
y whose value is given exactly by the Gauss rule.

10 —10 -0.5 .). 10 "-10 -05 00 05 10 -10 =05 0.0

2.0 2.0
15 5
1.0 0
0.5 .5

0.0

0.0
10 -1.0 -05 . ! 10 -1.0 -05 0.0 LO —10 -0.5 00 05

2.0 2.0 2.0
15 L

1.0 X

0.5 X

0.0 0.0

0.0 0.0
-1.0 -05 00 05 14 . . 8 . . X ! 1. . . X . 1.0 =10 -05 00 05 10 —10 -0.5 00 05

Ch 8. Root-finding in multiple dimensions

a.k.a. solving systems of nonlinear equations
We seek a zero of = - ﬂzn
thatisfind x € IR sach Hak 'F(x)

FGe) =

Our method will be iterative, starting with an initial guess)<(°

k=0,1,2,3,..., hopefully converging to a root.

fglc") | —
456

{-L (x)

J

v

K\
) ,and generatingx fj;m (

Newton's method
We use exactly the same idea as in the 1-variable case (Ch 2), namely:

At x(ﬂinearize F, and use the root of the linearization as X(K'”),

. I
In the n=1 case, the linearization is L’f (><4 S\ = ’F(x) 3 S"Y (x)

L//
Recall ,F'(xy = [AH&h)- rg\(x) ’ derinadive
h>0 h J
We can view f'(x) as a number "a" such that lim 'F(x‘“") "’FC“) » “L".. = O,
h=>0 I

n
This latter idea we can generalize toO? as follows.

e F. ﬁ?n-—> I’ , define its Fréchet derivative F'(x) as a (the) linear map A such that

[imn F(x“"ﬂ") - Fo<) - tAK = 0 Vhe ([Zn if such a map exists.
/ h tvo €ini
xeR

A
In particular, the limit must be zero for the choice h = e\-, , the jth standard basis vectorforﬂ?

For this choice of h, the ith component of the LHS above is

i B Geate) - Log — the = (A
b i i oy

- f/'
This is ME
3% I
Thus if the Frechet derivative exists, the i,j element of its matrix is

Giy = A
A%

Thus when the Frechet derivative exists, its matrix is ...

F o) =

Thus we solve the linear system

or more specifically,

od sk <= 9, 9

WHRYE ST N ¥
W %de o A

3f A5 - A

Newton's method is to approximate F near x by

L c+s) = FG) + Flog s

Feds = —F&)
FofN s 2 —F) o <0 e it

7 , the "jacobian matrix" of partial derivatives.

which we can obtain by one or more of the 3
differentiation methods we discussed recently.

set

pu—1
—

fos s
N Sep

Tn wmplLG) FG) = f([ﬂ) . WS-vo |

a([])

Feo =

'F'(xm) - [2.9° -|1__ [IZ -1

2.9 2-I & 2

[Note to self: try xO = [.1,.1] among others.]

%f Ot
auﬁ A\13

— 3
If our initial guess were xf"\:[z] , Thenn F () = [7 = I: [‘7—] .
| g+ 2\ 4

[et d0:[T]as e [12 s =[]

Implementation of multi-D Newton's method

z
(A-f\!L—I

KO
20\ 2‘(

import numpy as np

def newton(F, Fprime,x0, tol) :
def myF(x):

def myFprime(x):

X = # initial guess at root|

Note: having partial derivatives at a point
does NOT imply the Frechet derivative exists

the re Example: f(x,y) =

xy
x2+)?
+ Partial derivatives at (0,0):

The partial derivative with respect to x, £, (0.0), is the limit of

f(h,0) = £(0,0)
h

. h-0
h—0.5i h,0) =

ash ince f(0) = 230
- Similarly, the partial derivative with respect to y, £,(0.0),is also 0.

« Non-differentiability at (0, 0):

= The function is not even continuous at (0, 0) because the limit as (x, y)
approaches (0, 0) depends on the path taken.

o Along the line y = x, the function becomes
x

Along the line y = 2x, the function becomes

 Since the function approaches different values from different paths, the limit at
(0,0) does not exist, so the function is not continuous and therefore not
differentiable at the origin. ¢

But if partial derivatives exist and are continuol
then the F-derivative does exist (and its matrix
is the jacobian).

Implementation of multi-D Newton's method

import numpy as np

en by Yingkun, Tien, me, a

def newton(F,Fprime,x0,tol):
X = np.array(x0,dtype=float)
0

X

= [1,0] # initial guess at root
tol =

while True: ek

Fval = F(x)

Fprimeval = Fprime(x)

s = np.linalg.solve(Fprimeval,-Fval)
X += S

k+=1

if np.linalg.norm(s) <= tol:

z = newton(myF, myFprime, x, tol)
print('Approximate root is',z)
print('Residual is',myF(z)) # sanity check: should be very small

7 iterations used

print(f'{k} iterations used')
return x

Approximate root is [0.82603136 0.56362416]
Residual is [1.11022362e-16 0.00000000e+00]

Initial guess closer to root (in 2-norm),
but 7 iterations still required.

ial guess at root

=
tol

return np.array([u**3-v, u**2+v**2-1]) Even closer initial guess,

z = newton(myF, myFprime, x, tol) only 5 iterations required.
print('Approximate root is',z)

print('Residual is',myF(z)) # sanity check: should be very small

myFprime(x):

u,v = X

return np.array([[3*u**2, -1],
[2%u, 2*v]])

5 iterations used

Approximate root is [0.82603136 0.56362416]
Residual is [0.00000000e+00 -2.22044605e-16]

= [2,1] # initial guess at root
= le-12

newton(myF, myFprime, x, tol)
print('Approximate root is',z)
print('Residual is',myF(z)) # sanity check: should be very small

np.cos(7/6%np.pi)
np.sin(7/6*np.pi)

[c,s] # initial guess at root
= le-12

Ayet closer initial guess,
this time from Joel for the 3rd quadrant root,

7 iterations used requires 5 iterations for the desired accuracy.
Approximate root is [0.82603136 0.56362416]

r t z = newton(myF, myFprime, x, tol)
Residual is [-1.11022362e-16 0.00000000e+00]

print('Approximate root is',z)
print('Residual is',myF(z)) # sanity check: should be very small

Accurate to machine precision in 7 iterations.
5 iterations used
Approximate root is [-0.82603136 -0.56362416]
Residual is [-1.11022302e-16 0.00000000+00]

Below, I've written a more elaborate version that makes a picture of what's happening.

%config InlineBackend.figure_format = 'retina’
import matplotlib.pyplot as plt

def newton(F,Fprime,x,tol):
x = np.array(x,dtype=float) # floating point copy of x iIn case it comes in as ints
while True:
Fval = F(x)
Fpval = Fprime(x)
s = np.linalg.solve(Fpval,-Fval) # solve for our Newton step
newx = X + s
plt.plot([x[0],newx[0]], [x[1],newx[1]], k', alpha=0.5)
plt.plot(newx[0],newx[1], 'ko',alpha=0.2)
X = newx
if np.linalg.norm(s) < tol:
return x # done!

def myF(x):
u,v =X
return np.array([u**3 -v, u**2 + v¥*2 - 1])

myFprime(x):

u,v =x

return np.array([[3*u**2, -1],
[

2*u, 2*v]])

doit(x0,cx,cy,r):
plt.subplot(111,aspect=1)

draw the curves

= np.linspace(-1.5,1.5,400)
Uk*3
.plot(u,v,'b",lw=3,alpha=0.5)
np.linspace(0,2*np.pi,400)
= np.cos(t),np.sin(t)
.plot(x,y, " 'r',lw=3,alpha=0.5)

= x0 #[1/2,1/2]

.plot(x[0],x[1],"'co")

newton(myF,myFprime,x,le-12)
print('Approx root',z)
what's the residual at our approx root z?
print('residual at z:',myF(z))
#r =1.5
plt.xlim(cx-r,cx+r)
plt.ylim(cy-r,cy+r)
plt.xlabel('u',fontsize=20)
plt.ylabel('v',fontsize=20,rotation=0)
plt.savefig('temp.pdf'); # better render
return z

doit([.1,.1],0,-8,10)

I LR EUESES A t [-0.82603136 -0.56362416]

e pprox root [-0. -0.
close to the origin residual at z: [-1.11022302e-16 0.00000000e+00]
(where, we oberved,

the jacobian is
singular).

array([-0.82603136, -0.56362416])

Newton jumps far
from the root before
coming back and
converging.
Guessing it took
about 12 iterations
in this case.

-10.0 -7.5 -5.0 =25 00 25 50 75
u

doit([2,11,0,0,2)]

Approx root [0.82603136 0.56362416]
residual at z: [-1.11022302e-16 ©.00000000e+00]

array([0.82603136, 0.56362416])

2.0
15

1.0

2.0
-20 -15 -1.0 -05 00 05 10 15
u

doit([c,s],c,s,.09)

Approx root [-0.82603136 -0.56362416]
residual at z: [-1.11022302e-16 0.00000000e+00]

array([-0.82603136, -0.56362416])

Joel's starting

2.0

—0.950-0.925-0.900-0.875-0.850—-0.825-0.800

u

intitial guess [2,1]

What is the equilibrium configuration of
this "bridge"?

Let us enumerate
sthe degrees of freedom (variablgf)
*the constraints i

Corelannt - (1) mechanal %ML Gotim al auo e 1 nels

(i) U’V\ﬁ—]’\ﬁ %) y\ij sejm,ﬂ% A:\.AGD(
(-l\‘> g,‘/ﬂ szwwd é:"ow D f ’)M
” Pun - ? ﬂz, = /L SNace T v« jvﬂv\ TSy

=
'V\d a= QO /(oaA i azel . ANE 47\/4
é\(W\Lj J\m =/~ Sm(a\\%uwe,;

ol scby sl Ay~ Sy | @

Thus we have 3n+1 nonlinear equations in 3n+1 variables
- a problem that should be solvable with the multidimensional Newton's method.

