Ch 8. Solving systems of nonlinear equations, cont'd

for F: > R fid < st FeH=0,

USe ij(mn‘,'o%wesz:‘re ><(k)~—> ¥ , K=0O,l z ..
hepe

(k+) _ Q)) . K . . —/
b = X+ S o dn § ! Sqr‘hﬁ:)uﬂ . (x(z\) St~ — F(W) .
Let us examine the content and usefulness of some of the theorems in Ch 8.

8.3.6 A Global Convergence Result for Newton’s Method

THEOREM 8.8

S . e .. a8 . "
Let F .”}-'-.‘ — j-;f be continuously Fréchet-differentiable and conver over
ull' ’nf. R > In addition, suppose that (F'(z))"! exists for all z € R™ and
(F'(x))~' > 0 for all z € R™. Let F(z) = 0 have a solution z*. Then z* is
unique, and the Newton iterates z(k+1) — (k) _ (F'(z(*)) =1 p (k) converge
to x* for any initial choice z(® € R". Moreover, for all k\' >0)

o~ o (k+1) _-
T* <2 <z® for k=1,2.... (8.46)

. f/uuq_q/wuf this theorem statement, the inequalities are interpreted compo-
nentwise.)

A function F is said to be convex on a convex region D if
Vx,nje;-D, (‘~>~)F(=<)+ >\F('j) = F(((—-;\)x+>\«13 , >\€[0) I]
A region D is said to be convex if

Vx,.:)e. D, (|—>~>x+,\3 e D, ke[o,\]

In 1D (n=1), a convex function is one whose graph is "concave up" in Calc 1 language.

e

.
x
S
o

Examples to consider in relation to Thm 8.8
Which if any of the hypotheses do they fail to meet?

If meet all hypotheses, intuitive that Newton is globally convergent to a unique root?
THEOREM 8.8

Let F - R" on ’ Vg
: R be continuously Fréchet differentiable and convezr over

all of R". In addition, suppose that (F'(z))-1 exists for all o o R 1eg A: Fis F-differentiable everywhere
(F'(x)) >0 for all x € R™. Let F(z) = 0 have a solution z*. Then z* is B: F |S convex everyWhere

unique, and the Newton iterates z(¥+1) — (k) _ (pr() -1F(z(*)) converge
g)) (s g

to z* for any initial choice z®) € R™. Moreover, for all k > 0, C: F'is invertible everywhere
. \ s E'A_ = .
2 <2®H) < o® for k—19. s DiF7-1>=0elementwise everywhere

(Throughout this theorem state ment, the inequalities are interpreted compo- E: F has a root

nentwise.)

O F&
@ F‘(r\) = Qx——l ‘/

(k+1

n
R
X

A, B, C(F' nonzero), D, not E DOES NOT APPLY

\
® FR= <& N

® F= -l 4
gt

— _ < /
® F&)= A —

® T~ ~tahx T\

@ Bxanple O last class
)2

u\‘)'-r \Iq'- |

Convergence of Newton's method

THEOREM 8.6
Assume that F : D C R® — R™ is Fréchet differentiable on an open neigh-
borhood Sy C D of a point z* € D for which F(z*) = 0. Also, assume that
F'(x) is continuous at z* and that F'(z*) is nonsingular. Then x* is a point
of attraction of Newton’s method (8.29). i.e. for suff close starting point it
Hypothese are very mild. conJerges.

PROOF By Theorem 8.5, with A(z) = F'(z) for z € Sp, we conclude that
G(z) = x — (F'(z))"'F(z) is well-defined on some ball S(z*,68) C Sp,6 > 0.
In addition, p(G’(z*)) = o = 0. Therefore, by Corollary 8.1, z* is a point of
attraction. [

This is useful. It says Newton's method will usually work, if we have a
good enough starting guess.

@ F(x) - e" 1/ No. No root.

F(*) = Qx"' l / es.
@ — Y

@ F(’(\‘: K(L \/ No. F' singular at 0

——g

® Fey= xt-| A-<7’- Yes.

F(x)= = /~ Yes
O F&x)= i 7 .

® Ty~ ~tawhx T\

Yes.

B le @ d‘ﬂ,,,,, lagt class
@ a’"’f . Differentiable everywhere.
‘F({s]): v Has a root (has 2).
2,1,

nW+v- -
Non-singularity at the root requires computation.

detF'=6ur2v+2u =u(buv+?2)
Zeros are v-axis, and some hyperbola which is in quad 2&4,
so does not contain the roots. If so, theorem applies.

F'(uv) = 3ufr2 -1
2u 2v

In the last example, each of the two roots has a "basin of attraction" under Newton's method.
What do they look like?

First, | want each of you to guess - make a sketch and upload to UBlearns.

Account for our observation last time that
starting in the 1st quadrantat[.1,.1] Newton converges to the 3rd quadrant root!

Here is the code that generated the picture above:

def newton(F,Fprime,x, tol):
X = np.array(x,dtype=float) # floating point copy of x in case it comes in as ints
nsteps = 0
while True:
Fval = F(x)
Fpval = Fprime(x)
s = np.linalg.solve(Fpval, -Fval) # solve for our Newton step
newx = X + s
nsteps += 1
#plt.plot([x[0],newx[0]], [x[1],newx[1]], 'k',alpha=0.5)
#plt.plot(newx[0], newx[1], 'ko',alpha=0.2)
X = newx
if np.linalg.norm(s) < tol:
return x,nsteps # done!

def myF(x):
u,v = x
return np.array([u**3 -v, u**2 + v**2 - 1])

def myFprime(x):
u,v = x
return np.array([[3*u**2, -1],
[2*u, 2*v]])
first get the two roots
tol = 1le-12
x = [1,.5]
(ul,v1),nits = newton(myF,myFprime,x,tol) # 1st quadrant root
u3,v3 = -ul,-vi # 3rd quadrant root
print(ul,vl)
c,vc = 0,0
= 1.75
np.linspace(uc-r,uc+r,1000)
np.linspace(vc-r,vc+r,1000)
m = len(u)
basin = np.empty((m,m))
Uo,Vve = np.meshgrid(u,v)
#print (UO)
#assert(0)
for i in range(m):
for j in range(m):
u = uoefi,j]
v = Ve[i,j]
try:
z,nsteps = newton(myF,myFprime, (u,v),1.e-6)
if True:
basin[i, j]
else:
basin[i, j] = np.sqgrt(nsteps)
except:
basin[i,j] = 0
plt.figure(figsize=(12,10))
plt.imshow(np.flipud(basin),extent=(uc-r,uc+r,vc-r,vc+r),cmap="'spring',interpolation="nearest')
plt.plot([ul,u3],[v1,v3], 'ko') # plot the two roots

u
r
u
\

z[0]

Note: this would run a lot faster if "vectorized"
to perform iteration from all the starting points in parallel.
But for clarity of code | did it the slow way.

Let's zoom in on part of this picture:

0.625]7

0.600 A

0.575 -

0.550 -

0.525 -

0.500 A

0.475 {48

-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100

8.3.2 Convergence Rate of Newton’s Method

We now examine the rate of convergence of Newton iteration.

PROPOSITION 8.1

Assume that the hypotheses of Theorem 8.6 hold. Then, for the point of
attraction of the Newton iteration (whose existence is guaranteed by Theo-

m 8.6), we have

li Jz*+) —z*|| _
. _

(8.30)
k—oo ||z(F) — z*|

oreover, if for some constant ¢,
|F'(z) — F'(z*)|| < éllz - z*| (that is, F' is Lipschitz continuous) (8.31)

] 3 ' sitive constant c
for all x in some neighborhood of =*, then there exists a po
e 2®+D — 2| < ¢f|lz®) —z*||”. (8.32)

Thus convergence is fast!

ufficiently
(k+1) _ z*||/||lz® —2*|| < « for all ks
REMARK 8.6 If ||z T . r al ’
large, the convergence is said to be linear. Equatnon. (8.39) mdxc;tw I;Izmﬁ,z
meth,od has superlinear convergence, and if (8.31) is satisfied, then

method is quadratically convergent near r-.

And let's see how many iterations it takes to converge from each starting guess in our 2D example:

u
r

u = np.linspace(uc-r,uc+r,1000)
v = np.linspace(vc-r,vc+r,1000)
m = len(u)

basin = np.empty((m,m))

Uo0,Ve = np.meshgrid(u,v)
nsteps_top = 20

for i in range(m):
for j in range(m):

u = Uoe[i,j]
v = VO[1i,j]
try:
z,nsteps = newton(myF,myFprime, (u,v),1.e-6)
if True:
basin[i,j] = -min(nsteps,nsteps_top) if z[0]<O else min(nsteps,nsteps_top)#np.linalg.norm(z-[ul, v
else:

basin[i,j] = ©
except:
basin[i,j] = 0@
plt.figure(figsize=(12,10))
plt.imshow(np.flipud(basin),extent=(uc-r,uc+r,vc-r,vc+r),cmap="'rainbow',interpolation="'nearest')
plt.colorbar();

This picture shows the number of Newton iterations required for convergence (as negative if to 3rd quadrant roo

10

10

0.5

0.0 -

-10
-1.0 4

-15
-15 -20

—1.5

THEOREM 8.7
(Newton-Kantorovich) Let F : D ¢ R™ — R™ be F-differentiable on a conve:
set Dy C D, let ||-|| be some norm, and assume that, for some constant v > 0

IF'(z) = F'(y)| <vllz—y| for all z,y € D, (8.38;

(T(mt is,. assume that F' is Lipschitz continuous on Dy.) Suppose that F”' (@
is invertible for any =% € D,. Moreover, suppose that, for constants 3, n >0,

I(F' (@)~ < 8 (8.39
I(F" (@) F)| < 9. (8.
Also assume that
a=pyn < % (8.41)
Set
. 1-(1-2a)i _
- o (8.42)

and assume that

5(z©®,¢*) = {:1: Nz — 2O < t*} C Do.

n, the Newton iterates
L+ — k) — (Fl(z(k)))—lp(x(k)), k=0,1,2,---

are well-defined, remain in S(z?,t*), and converge to a solution =* of F(x) =

0 which is unique in S(z©@,¢).
Moreover, we have the error estimate

k
(20)2 k=0,1,2,--- (8.43)
By2*
This gives us a possible way of calculating how close an initial guess
will be close enough for convergence. (t* being the relevant ball radius.|)
PROOF See [70]. -

|z — 2"l <

Quasi-Newton methods that may be more economical

><‘K+')= x@("+ 5 F"('K(K))SCK\—_ —-F(xm) _ M&AH‘OV\

Quasi-Newton methods are modifications of Newton's method for
stability or efficiency.

Forexample, we could use ~ x(K*) = 6 1 3\ <09 i O< X<,

which we might call "timid Newton".
In some cases, this enlarges he convergence region.

.Or, we could try to avoid the large expense of a full Jacobian evaluation at each step
by approximating it based on information we pick up along the way.

Sometimes our main concern is just getting to x*. x4
Other times our main concern is economy. ™

(€ V]
If efficiency is important, we could note that evaluating F at x(k) and x(k+1) =

tells us something about how F varies in the direction from x(k) to x(k+1): (et <}
it's gives us a secant approximation to the directional derivative along the vector X -~ = S

Now the derivative F' has n*2 components, and this secantinformation has only n components.
But using the new information

A(K’ F(%K.u\) F x(m)

)
allows us to "update" our previousjacobianﬁﬁd) to obtain an approximation to F(X 0‘"") .

] (1))
which we'll call B (B for Broyden) ,

In fact, the secant approximation is A(K\ (K-i 0

nse—= S‘qﬁz . W
So let's use the secant approximation as a constraint on B(k+1).
Thatis n scalar constraints on n*2 unknowns.
We need n*2-n additional constraints.

Since the move along s(k) told us NOTHING about the rate of change of F along orthogonal directions,
that is along directions

(K)
w e S_L
: <<
let's "leave alone" the action of Balong to € > .
: : (i) (<)
Thatis, require L = B " \v4 e S-C_:)_

Sine duv\()" n— (

this gives us (n-1)n more scalar constraints on E jUSt the number we needed.

The solution of this system of n*2 equations is called the "Broyden rank-1 update" of the jacobian:

IS(ml) _ BCK‘/+ Acn)__ BMSCK) S(K{T D _ E " ﬂz

S('o TS (€9

We can see by eyeballing it that this formula satisfies the two sets of conditions.

Benefit of Broyden updating
Cheaper than full jacobian evaluation at every step (very much cheaper for large n).

Downside
Because not using the true jacobian, convergence is not quadratic (though it's still superlinear)

Updating inverse of B instead of B: Sherman-Morrison formula

Even with a cheap approximation to F', we still have to solve B{‘Jg(“’ = - F(X“")
for every step s®),

which costs ~ %r\s ops -a lot!

How about updating the inverse of B instead of updating B? Can that be done?

—~ —
Of course we may need to "get off the ground" by doing a full brute force evaluation of B(O)M 'Fl(x("’) .
~\
B") ¢ B = BM, UNT RS Same i &
- ~1 ~I -]
(/\-f UWT> = AT - Aw'A

L+ vTA (A

So is there a nice cheap formula for

Yes! The Sherman-Morrison formula is

| will ask you to verify this in the next homework assignment.

Homotopy (morphing) in root-finding

Often hard to find a good enough starting pointx(“ for Newton or quasi-Newton
because the "basin of attraction" of the root is very small.

How to come up with a good X ?

m
A powerful idea is to consider a family of systems H ‘ ﬂ? > [o, ('_] -]K“

e Hix,0)= GG&) , Hx[) = F6<)
| A R

some other "nicer, easier" function

the function whose root we want

Then what we do is start with an easily obtained root of G, and then gradually "morph" G into F,
incrementing the parameter A in H(x,\),

tracking the root as we go, using the root on the previous value of\

as the starting x(0) for the current value of A ,

until finally atA=| we have a root of F.

E
A=) m&ﬂ F
oot § G

A I
o N
H:' G-— H-"—‘F
Choosing a suitable homotopy is not necessarily easy.

A homotopy can easily fail, such as when the root of G and the sought root of F are not connected
by a curve, maybe like this:

4G ot oo

|
o A I

A lazy choice of homotopy, like G(x) = x - r (really easy to find a root (it's r!)) and H(¥,>\> = (l—/\>6-(&)
is almost certain to fail. + 2 (%)

Knowledge about the particular problem at hand will be useful in constructing a successful homotopy,
such as in the toy suspension bridge system of Project Option 3. For example, a good approach
might be to let G be a version of F with different, and particularly simplifying, parameter values,

and letthe homotopy be a linear ramp from the simplifying parameter values

to the values you're actually interested in.

