
Ch 8. Solving systems of nonlinear equations, cont'd

Let us examine the content and usefulness of some of the theorems in Ch 8.

A function F is said to be convex on a convex region D if 

A region D is said to be convex if

In 1D (n=1), a convex function is one whose graph is "concave up" in Calc 1 language.



Examples to consider in relation to Thm 8.8
Which if any of the hypotheses do they fail to meet?
If meet all hypotheses, intuitive that Newton is globally convergent to a unique root?

A: F is F-differentiable everywhere
B: F is convex everywhere
C: F' is invertible everywhere
D: F'^-1 >=0 elementwise everywhere
E: F has a root

A, B, C (F' nonzero), D, not E   DOES NOT APPLY

A, B, C, D, E   -  DOES APPLY

F not invertible at x=0 (i.e. not C)
not D either - F'^-1 < 0 for x<0

A, B, not C, not D, E  DOES NOT APPLY
Conclusion clearly false because there are 2 roots
A, not B, C, D, E
acutally tanh is a classic example where
Newton diverges to infinity for large enough
initial x.

Symmetry suggests D could be replaced
by non-positivity.

A, not B, DOES NOT APPLY
Must be, because it has 2 roots,
so not possible to have global convergence
to either one. 

convex
not convex



Hypothese are very mild.
i.e. for suff close starting point it 
converges.

No. No root.

Yes.

No. F' singular at 0

Yes.

Yes.

Yes.

F'(u,v) =   3u^2   -1
                  2u      2v

Differentiable everywhere.
Has a root (has 2).

Non-singularity at the root requires computation.
det F' = 6u^2 v + 2u  = u( 6uv + 2 )
Zeros are v-axis, and some hyperbola which is in quad 2&4,
so does not contain the roots. If so, theorem applies.



In the last example, each of the two roots has a "basin of attraction" under Newton's method.
What do they look like?

First, I want each of you to guess - make a sketch and upload to UBlearns.
Account for our observation last time that 
starting in the 1st quadrant at [.1,.1] Newton converges to the 3rd quadrant root!



def newton(F,Fprime,x,tol):
    x = np.array(x,dtype=float)  # floating point copy of x in case it comes in as ints
    nsteps = 0
    while True:
        Fval = F(x)
        Fpval = Fprime(x)
        s = np.linalg.solve(Fpval,-Fval)  # solve for our Newton step
        newx = x + s
        nsteps += 1
        #plt.plot([x[0],newx[0]],[x[1],newx[1]],'k',alpha=0.5)
        #plt.plot(newx[0],newx[1],'ko',alpha=0.2)
        x = newx
        if np.linalg.norm(s) < tol:
            return x,nsteps  # done!
        
def myF(x):
    u,v = x
    return np.array([ u**3 -v, u**2 + v**2 - 1 ])

def myFprime(x):
    u,v = x
    return np.array([[ 3*u**2, -1 ],
                     [ 2*u,    2*v]])

# first get the two roots
tol = 1e-12
x = [1,.5]
(u1,v1),nits = newton(myF,myFprime,x,tol) # 1st quadrant root
u3,v3 = -u1,-v1                    # 3rd quadrant root
print(u1,v1)

uc,vc = 0,0
r = 1.75
u  = np.linspace(uc-r,uc+r,1000)
v  = np.linspace(vc-r,vc+r,1000)
m = len(u)
basin = np.empty((m,m))
U0,V0 = np.meshgrid(u,v)
#print(U0)
#assert(0)
for i in range(m):
    for j in range(m):
        u = U0[i,j]
        v = V0[i,j]
        try:
            z,nsteps = newton(myF,myFprime,(u,v),1.e-6)
            if True: 
                basin[i,j] = z[0]
            else:
                basin[i,j] = np.sqrt(nsteps)
        except:
            basin[i,j] = 0
plt.figure(figsize=(12,10))
plt.imshow(np.flipud(basin),extent=(uc-r,uc+r,vc-r,vc+r),cmap='spring',interpolation='nearest')
plt.plot([u1,u3],[v1,v3],'ko') # plot the two roots  

Here is the code that generated the picture above:

Note: this would run a lot faster if "vectorized" 
to perform iteration from all the starting points in parallel. 
But for clarity of code I did it the slow way.



Let's zoom in on part of this picture:

v

u





And let's see how many iterations it takes to converge from each starting guess in our 2D example:

uc,vc = 0,0
r = 1.5
u  = np.linspace(uc-r,uc+r,1000)
v  = np.linspace(vc-r,vc+r,1000)
m = len(u)
basin = np.empty((m,m))
U0,V0 = np.meshgrid(u,v)
nsteps_top = 20

for i in range(m):
    for j in range(m):
        u = U0[i,j]
        v = V0[i,j]
        try:
            z,nsteps = newton(myF,myFprime,(u,v),1.e-6)
            if True: 
                basin[i,j] = -min(nsteps,nsteps_top) if z[0]<0 else min(nsteps,nsteps_top)#np.linalg.norm(z-[u1,v1])
            else:
                basin[i,j] = 0 
        except:
            basin[i,j] = 0
plt.figure(figsize=(12,10))
plt.imshow(np.flipud(basin),extent=(uc-r,uc+r,vc-r,vc+r),cmap='rainbow',interpolation='nearest')
plt.colorbar();  

This picture shows the number of Newton iterations required for convergence (as negative if to 3rd quadrant root).





Quasi-Newton methods that may be more economical

Quasi-Newton methods are modifications of Newton's method for
stability or efficiency.

For example, we could use

which we might call "timid Newton". 
In some cases, this enlarges he convergence region. 

Or, we could try to avoid the large expense of a full Jacobian evaluation at each step
by approximating it based on information we pick up along the way.

Sometimes our main concern is   just getting to x*.
Other times our main concern is economy.

If efficiency is important, we could note that evaluating F at  x(k) and x(k+1)
tells us something about how F varies in the direction from x(k) to x(k+1):
it's gives us a secant approximation to the directional derivative along the vector 

Now the derivative F' has n^2 components, and this secant information has only n components.
But using the new information 

allows us to "update" our previous jacobian            to obtain an approximation to

which we'll call                     (B for Broyden) 

In fact, the secant approximation is 

So let's use the secant approximation as a constraint on B(k+1). 
That is n scalar constraints on n^2 unknowns.
We need n^2-n additional constraints.

Since the move along s(k) told us NOTHING about the rate of change of F along orthogonal directions,
that is along directions 

let's "leave alone" the action of B along

That is, require

this gives us (n-1)n more scalar constraints on               : just the number we needed.   



The solution of this system of n^2 equations is called the "Broyden rank-1 update" of the jacobian:

We can see by eyeballing it that this formula satisfies the two sets of conditions.

Benefit of Broyden updating
Cheaper than full jacobian evaluation at every step (very much cheaper for large n).

Downside
Because not using the true jacobian, convergence is not quadratic (though it's still superlinear)

Even with a cheap approximation to F', we still have to solve 
for every step  

which costs                   ops - a lot!

How about updating the inverse of B instead of updating B? Can that be done?

Of course we may need to "get off the ground" by doing a full brute force evaluation of 

So is there a nice cheap formula for 

Yes! The Sherman-Morrison formula is

I will ask you to verify this in the next homework assignment.

Updating inverse of B instead of B: Sherman-Morrison formula

Does not require O(n^3) ops.



Homotopy (morphing) in root-finding

Often hard to find a good enough starting point           for Newton or quasi-Newton
because the "basin of attraction" of the root is very small.

How to come up with a good 

A powerful idea is to consider a family of systems

Then what we do is start with an easily obtained root of G, and then gradually "morph" G into F,
incrementing the parameter       in   H(x,   ), 
tracking the root as we go, using the root on the previous value of      
as the starting x(0) for the current value of      ,
until finally at           we have a root of F.

Choosing a suitable homotopy is not necessarily easy.
A homotopy can easily fail, such as when the root of G and the sought root of F are not connected
by a curve, maybe like this:

A lazy choice of homotopy, like  G(x) = x - r (really easy to find a root (it's r!)) and 
is almost certain to fail.

Knowledge about the particular problem at hand will be useful in constructing a successful homotopy,
such as in the toy suspension bridge system of Project Option 3. For example, a good approach
might be to let G be a version of F with different, and particularly simplifying, parameter values, 
and let the homotopy be a linear ramp from the simplifying parameter values 
to the values you're actually interested in.

the function whose root we want
some other "nicer, easier" function


