
Homotopy (morphing) in root-finding

Often hard to find a good enough starting point for Newton or quasi-Newton
because the "basin of attraction" of the root is very small.

How to come up with a good

A powerful idea is to consider a family of systems

Then what we do is start with an easily obtained root of G, and then gradually "morph" G into F,
incrementing the parameter in H(x,),
tracking the root as we go, using the root on the previous value of
as the starting x(0) for the current value of ,
until finally at we have a root of F.

Choosing a suitable homotopy is not necessarily easy.
A homotopy can easily fail, such as when the root of G and the sought root of F are not connected
by a curve, maybe like this:

A lazy choice of homotopy, like G(x) = x - r (really easy to find a root (it's r!)) and
is almost certain to fail.

Knowledge about the particular problem at hand will be useful in constructing a successful homotopy,
such as in the toy suspension bridge system of Project Option 3. For example, a good approach
might be to let G be a version of F with different, and particularly simplifying, parameter values,
and let the homotopy be a linear ramp from the simplifying parameter values
to the values you're actually interested in.

the function whose root we want
some other "nicer, easier" function

A final note on solving non-linear systems

x x

Ch. 9 Optimization

GIven a scalar-valued function

find a minimizer of f on D, that is find

or find a local minimizer, that is find

If you want to maximize some function g, then define f = -g and minimize f.

Simplest case is n=1:

This problem is reminiscent of 1D root-finding, but a little trickier.

Recall the bisection method for root-finding, where we had a "bracket" [a,b] of the sought root:
sign(f(a)) != sign(f(b)) guaranteeing a root in [a,b] if f is continuous, by IVT theorem.
Idea was to shrink the bracket repeatedly until narrower than our error tolerance.

Can we do something similar for minimization?

Let's say that f is "unimodal" on [a,b] if
f is strictly decreasing on [a,c]
f is strictly increasing on [c,b].

Then c is the unique minimizer of f on [a,b].

As analog of the "bracket" in root-finding, for a function f,
let's define a "vee" as a triple of points (p,q,r)
such that p,q,r in [a,b] and
f(p) > f(q) and f(r) > f(q). Then if f is unimodal on [a,b],

 we are guaranteed that

(Why?)

ni

The idea, analogously to bisection, is to repeatedly shrink the "vee",
such that the width "|r-p|" of the vee goes to zero.

How to do that?

Ex:

Ex: finding the "best" Bezier approximation
to a quarter-circle in Homework 6 Q7.

Let's pick a point

Your ideas on what to pick for s?

Regardless of the precise choice of s, suppose its between p and r,
and consider the possible outcomes for f(s):

Idea 1: (p+r)/2

Idea 2: midpoint of one half, alternating

Idea 3: midpoint of larger subinterval

Let's find out what the guaranteed vee-width reduction is
for your various ideas on choosing s.

Is there a choice for s where we are assured a specific reduction on each step?
Maybe if we find a way to preserve the geometry,
regardless of which of the 2 new vees we are forced to choose?

Is it possible to choose h such that the 2 possible vee-widths are the same?

This is called "golden mean search" or "golden section search".

Start by setting q = (1-h)p + hr, that is q is a fraction h of the way from p to r.

With this scheme we are assured a width reduction of ~.618 at each step.

(Almost as good as bisection in root-finding.)

Idea 1: (p+r)/2

Idea 2: midpoint of one half, alternating

Idea 3: midpoint of larger subinterval

The new vee is
 either p,q,s reducing by 3/4
 or q,s,r reducing by 1/2

The new vee will be
either p,s,q reducing by 2/3
or s,q,r reducing by 2/3

Best possible outcome would be to
alternate 1/2 followed by a 2/3.
Average per-step reduction is sqrt(1/2 . 2/3) = sqrt(1/3) ~ .577
which is quite good - almost as good as bisection for root finding.
Worst case is sqrt(2/3 . 3/4) = sqrt(1/2) ~ .7

best guarantee

A caution about precision

We cannot demand nearly as high precision in optimization as in root-finding.

Recall in root-finding it's ok to set "tol"

But for minimization, typically functions have quadratic minima,
and near c, f changes hardly at all as x changes.

So our limit of precision in finding the minimum is

Don't ask for more!

A quick implementation of golden section search ...

import numpy as np
import matplotlib.pyplot as plt
%matplotlib notebook
amp = 100

def golden(f,p,r,tol):

 h = (-1 + np.sqrt(5))/2
 q = (1-h)*p + h*r

 # verify that p,q,r is a vee
 assert(p<r and f(p)>f(q) and f(r)>f(q))

 count = 0
 plt.plot((p,q,r),count*np.ones(3),'o-')
 while r-p > tol:
 s = p + r - q
 fs,fq = f(s),f(q)
 if s<q:
 if fs<fq:
 q,r = s,q
 elif fs>fq:
 p = s
 else: #fs==fq
 p,r = s,q
 q = (1-h)*p + h*r
 else: #s>q:
 if fs<fq:
 p,q = q,s
 elif fs>fq:
 r = s
 else: #fs==fq
 p,r = q,s
 q = (1-h)*p + h*r
 count += 1
 plt.plot([p,q,r], count*np.ones(3),'o-',color=f'C{count}',lw = 3,alpha=0.5)
 return p,r

def myf(x): return (x-1.23456789)**2 + 5 # an example function with a quadratic minimum

p,r = 1,1.4
x = np.linspace(p,r,200)
plt.figure(figsize=(8,5))
golden(myf,1,1.4,1.e-8)

[space for results]

Now let's do Homework 6 Q7 (Bezier approx to quarter-circle) properly!

def bezier(P,t): # columns of P are P0, P1, P2, P3
 P0,P1,P2,P3 = P.T
 s = 1 - t
 x = s**3*P0[0] + 3*s**2*t*P1[0] + 3*s*t**2*P2[0] + t**3*P3[0]
 y = s**3*P0[1] + 3*s**2*t*P1[1] + 3*s*t**2*P2[1] + t**3*P3[1]
 return x,y

def deviation_from_circle(q):
 P = np.array([[1,1,q,0],
 [0,q,1,1]]) # columns of P are P0, P1, P2, P3
 t = np.linspace(0,1,500)
 x,y = bezier(P,t)
 return np.abs(x**2 + y**2 - 1).max() # maximum deviation from circle

golden(deviation_from_circle,0,1,2e-8)

Next class, we'll explore optimization with respect to a vector variable (n > 1),
(which is a huge area).

