
Homotopy (morphing) in root-finding

Often hard to find a good enough starting point           for Newton or quasi-Newton
because the "basin of attraction" of the root is very small.

How to come up with a good 

A powerful idea is to consider a family of systems

Then what we do is start with an easily obtained root of G, and then gradually "morph" G into F,
incrementing the parameter       in   H(x,   ), 
tracking the root as we go, using the root on the previous value of      
as the starting x(0) for the current value of      ,
until finally at           we have a root of F.

Choosing a suitable homotopy is not necessarily easy.
A homotopy can easily fail, such as when the root of G and the sought root of F are not connected
by a curve, maybe like this:

A lazy choice of homotopy, like  G(x) = x - r (really easy to find a root (it's r!)) and 
is almost certain to fail.

Knowledge about the particular problem at hand will be useful in constructing a successful homotopy,
such as in the toy suspension bridge system of Project Option 3. For example, a good approach
might be to let G be a version of F with different, and particularly simplifying, parameter values, 
and let the homotopy be a linear ramp from the simplifying parameter values 
to the values you're actually interested in.

the function whose root we want
some other "nicer, easier" function

A final note on solving non-linear systems

x x



Ch. 9 Optimization

GIven a scalar-valued function                    

find a minimizer of f on D, that is find 

or find a local minimizer, that is find  

If you want to maximize some function g, then define f = -g and minimize f.

Simplest case is n=1:   

This problem is reminiscent of 1D root-finding, but a little trickier.

Recall the bisection method for root-finding, where we had a "bracket" [a,b] of the sought root:
sign( f(a) ) != sign( f(b) ) guaranteeing a root in [a,b] if f is continuous, by IVT theorem.
Idea was to shrink the bracket repeatedly until narrower than our error tolerance. 

Can we do something similar for minimization?

Let's say that f is "unimodal" on [a,b] if 
f is strictly decreasing on [a,c]
f is strictly increasing on [c,b].

Then c is the unique minimizer of f on [a,b].

As analog of the "bracket" in root-finding, for a function f, 
let's define a "vee" as a triple of points (p,q,r)
such that p,q,r in [a,b] and 
f(p) > f(q) and f(r) > f(q).                                                                    Then if f is unimodal on [a,b],

  we are guaranteed that

(Why?)

ni

The idea, analogously to bisection, is to repeatedly shrink the "vee",
such that the width "|r-p|" of the vee goes to zero.

How to do that?

Ex:

Ex: finding the "best" Bezier approximation 
to a quarter-circle in Homework 6 Q7.



Let's pick a point                                              

Your ideas on what to pick for s?

Regardless of the precise choice of s, suppose its between p and r, 
and consider the possible outcomes for f(s):

Idea 1:  (p+r)/2

Idea 2: midpoint of one half, alternating

Idea 3: midpoint of larger subinterval



Let's find out what the guaranteed vee-width reduction is
for your various ideas on choosing s.

Is there a choice for s where we are assured a specific reduction on each step?
Maybe if we find a way to preserve the geometry, 
regardless of which of the 2 new vees we are forced to choose?

Is it possible to choose h such that the 2 possible vee-widths are the same?

This is called "golden mean search" or "golden section search".

Start by setting q = (1-h)p + hr, that is q is a fraction h of the way from p to r.

With this scheme we are assured a width reduction of ~.618 at each step.

(Almost as good as bisection in root-finding.)

Idea 1:  (p+r)/2

Idea 2: midpoint of one half, alternating

Idea 3: midpoint of larger subinterval

The new vee is 
  either p,q,s reducing by 3/4
  or q,s,r reducing by 1/2

The new vee will be
either p,s,q  reducing by 2/3
or s,q,r reducing by 2/3

Best possible outcome would be to
alternate 1/2 followed by a 2/3.
Average per-step reduction is sqrt(1/2 . 2/3) = sqrt(1/3) ~ .577
which is quite good - almost as good as bisection for root finding.
Worst case is sqrt(2/3 . 3/4) = sqrt(1/2) ~ .7

best guarantee



A caution about precision

We cannot demand nearly as high precision in optimization as in root-finding.

Recall in root-finding it's ok to set "tol" 

But for minimization, typically functions have quadratic minima,
and near  c,   f changes hardly at all as x changes. 

So our limit of precision in finding the minimum is

Don't ask for more!

A quick implementation of golden section search ...

import numpy as np
import matplotlib.pyplot as plt
%matplotlib notebook
amp = 100

def golden(f,p,r,tol):

    h = (-1 + np.sqrt(5))/2
    q = (1-h)*p + h*r

    # verify that p,q,r is a vee
    assert( p<r and f(p)>f(q) and f(r)>f(q) )
    
    count = 0
    plt.plot((p,q,r),count*np.ones(3),'o-')
    while r-p > tol:
        s = p + r - q
        fs,fq = f(s),f(q)
        if s<q:
            if fs<fq:
                q,r = s,q
            elif fs>fq:
                p = s
            else: #fs==fq
                p,r = s,q
                q = (1-h)*p + h*r
        else: #s>q:
            if fs<fq:
                p,q = q,s
            elif fs>fq:
                r = s
            else: #fs==fq
                p,r = q,s
                q = (1-h)*p + h*r
        count += 1
        plt.plot([p,q,r], count*np.ones(3),'o-',color=f'C{count}',lw = 3,alpha=0.5)
    return p,r
        
        
def myf(x): return (x-1.23456789)**2 + 5   # an example function with a quadratic minimum

p,r = 1,1.4
x = np.linspace(p,r,200)
plt.figure(figsize=(8,5))
golden(myf,1,1.4,1.e-8)



[space for results]



Now let's do Homework 6 Q7 (Bezier approx to quarter-circle) properly!

def bezier(P,t):  # columns of P are P0, P1, P2, P3
    P0,P1,P2,P3 = P.T
    s = 1 - t
    x =  s**3*P0[0] + 3*s**2*t*P1[0] + 3*s*t**2*P2[0] + t**3*P3[0]
    y =  s**3*P0[1] + 3*s**2*t*P1[1] + 3*s*t**2*P2[1] + t**3*P3[1]
    return x,y

def deviation_from_circle(q):
    P = np.array([[1,1,q,0],
                  [0,q,1,1]]) # columns of P are P0, P1, P2, P3
    t = np.linspace(0,1,500)
    x,y = bezier(P,t)
    return np.abs(x**2 + y**2 - 1).max()  # maximum deviation from circle

golden(deviation_from_circle,0,1,2e-8)



Next class, we'll explore optimization with respect to a vector variable ( n > 1 ),
(which is a huge area).


