A final note on solving non-linear systems
Homotopy (morphing) in root-finding

Often hard to find a good enough starting pointx(“ for Newton or quasi-Newton
because the "basin of attraction" of the root is very small.

How to come up with a good X ?

% n
A powerful idea is to consider a family of systems H: ﬂ? > [o,(] - ﬂZ
H(X, \)

e H(x,0)= GG&) , Hx[) = F6<)
4 \

some other "nicer, easier" function

the function whose root we want

Then what we do is start with an easily obtained root of G, and then gradually "morph" G into F,
incrementing the parameter A in H(x,\),

tracking the root as we go, using the root on the previous value of\

as the starting x(0) for the current value of A ,

until finally atA=| we have a root of F.

E
A=) m&ﬂ F
oot § G

A I
o N
H:' G-— H-"—‘F
Choosing a suitable homotopy is not necessarily easy.

A homotopy can easily fail, such as when the root of G and the sought root of F are not connected
by a curve, maybe like this:

4G ot oo

|
o A I

A lazy choice of homotopy, like G(x) = x - r (really easy to find a root (it's r!)) and H(¥,>\> = (l—/\>6-(&)
is almost certain to fail. + 2 (%)

Knowledge about the particular problem at hand will be useful in constructing a successful homotopy,
such as in the toy suspension bridge system of Project Option 3. For example, a good approach
might be to let G be a version of F with different, and particularly simplifying, parameter values,

and letthe homotopy be a linear ramp from the simplifying parameter values

to the values you're actually interested in.

Ch. 9 Optimization

'\
Glven a scalar-valued function —PI D_C_UZ = I—R

find a minimizer of fon D, thatis find x%eD st {(x" < 'g:(") V< 67)_
imizer that v laood €] >
or find a local minimizer, thatis find x¥¢D s —F(x’z)é —g&) X E Sswen

If you want to nE)iimize some function g, then define f = -g and minimize f.

—

Simplest case is n=1: '9 - Ex: fﬁ;‘,

Ex: finding the "best" Bezier approximation w
to a quarter-circle in Homework 6 Q7.

This problem is reminiscent of 1D root-finding, but a little trickier.

Recall the bisection method for root-finding, where we had a "bracket" [a,b] of the sought root:
sign(f(a)) !=sign(f(b)) guaranteeing a rootin [a,b] if fis continuous, by IVT theorem.
ldea was to shrink the bracket repeatedly until narrower than our error tolerance.

Can we do something similar for minimization?

Let's say that fis "unimodal"on [a,b]if J ¢ € (a,b’) Suclk ik
fis strictly decreasing on [a,c]

~
fis strictly increasing on [c,b]. \\\O‘/
C b

Then cis the unique minimizer of fon [a,b].

A
As analog of the "bracket" in root-finding, for a function f,

let's define a "vee" as a triple of points (p,q,r)
such that p,q,rin [a,b] and
f(p) > f(q) and f(r) > f(q). Then if fis unimodal on [a,b],
we are guaranteed that
]

Ce (p,r).

(Why?)

N Y

The idea, analogously to bisection, is to repeatedly shrink the "vee",
such that the width "|r-p|" of the vee goes to zero.

How to do that?

Let's pick a point S' € CP,P) , S aé"'

Your ideas on what to pick for s?
Idea 1: (p+r)/2
Idea 2: midpoint of one half, alternating

Idea 3: midpoint of larger subinterval

P S o‘, r

Regardless of the precise choice of s, suppose its between p and r,
and consider the possible outcomes for f(s):

I % foe | ,
T " n
| (A7} '(7 Cﬂw\- haﬂ:&v\ waunlmolnli{j _
1 {e)e
O na smglls ver s (S 91)

I {6)e
A nod swglls ves is (?,3,6;).
I £cH= @ = §G)

0 e smalls vee s (S,1,9)

Wheee 4 }th“'wezh SZolr.
mmﬂb“\-ﬂ'e

ooooooo

Let's find out what the guaranteed vee-width reduction is Idea 1: (p+r)/2
for your various ideas on choosing s.

Idea 2: midpoint of one Ralf, alternating

£

Idea 3: midpoint of large@Subinterval

The new vee is

either p,q,s reducing by 3/4 _
or g,s,r reducing by 1/2 Best possible outcome would be to

alternate 1/2 followed by a 2/3.)

Average per-step reduction is sqrt(1/2 . 2/3) = sqrt(1/3) ~ .577

which is quite good - almost as good afCLs)ection for root finding.
g

The new vee will be Worst case is sqrt(2/3 . 3/4) = sqrt(1/2)

either p,s,q reducing by 2/3

or s,q,r reducing by 2/3 best guarantee

Is there a choice for s where we are assured a specific reduction on each step?
Maybe if we find a way to preserve the geometry,
regardless of which of the 2 new vees we are forced to choose?

{

h -/\
h

— e ———

’w

Is it possible to choos@ such that the 2 possible vee-widths are the same?

e wold naed h:@ —_ K+ h—1=0
N

m—

I

h= _|¢\(’m _ —4;[5? =50(Mww=.618_..

— 7 2 a_»,(g\lm M‘Ho

This is called "golden mean search" or "golden section search".
Start by setting q = (1-h)p + hr, thatis q is a fraction h of the way from p to r.
With this scheme we are assured a width reduction of ~.618 at each step.

(Almost as good as bisection in root-finding.)

A caution about precision

We cannot demand nearly as high precision in optimization as in root-finding.

~
R _ ' L " "o () . 2
Recall in root-finding it's ok to set "tol"~ |0 & , o™ | a(x—c)2+|: -\ - f&_(_)

But for minimization

, typically functions have quadratic minima,

b
and near c, fchanges hardly atall as x changes. Set . &= /b ‘é :
— 2 A M a-

\CL

et

[

T ot § 60 R ale-SF b,

hont 040 g, |] = BrlEa

,%(c)
& Aoude [Ax) = [B{E -

So our limit of precision in finding the minimum is

~ o ~ 167 ,H,U;QE et > Lok

Don't ask for more!

A quick implementation of golden section search ...

import numpy as np
import matplotlib.pyplot as plt
%matplotlib notebook

amp

def

def

p,r
X:
plt.
gold

= 100
golden(f,p,r,tol):

h
q

(1-h)*p + h*r

(-1 + np.sqrt(5))/2

verify that p,q,r is a vee
assert(p<r and f(p)>f(q) and f(r)>f(q))

count = 0

plt.plot((p,q,r),count*np.ones(3),'o-")

while r-p > tol:
s=p+r -g
fs,fq = f(s),f(q)

if s<q:
if fs<fq:
q,r = s,q
elif fs>fq:
p=3:
else: #fs==fq
p,r =15,q
q = (1-h)*
else: #s>(Q:
if fs<fq:
p,q =4q,s
elif fs>fq:
r=-s
else: #fs==fq
p,r =4d,s
q = (1-h)*

count += 1

plt.plot([p,q,rl],
return p,r

p + h*r

p + h*r

count*np.ones(3), 'o-',color=f'C{count}', lw = 3,alpha=0.5)

myf(x): return (x-1.23456789)**2 + 5 # an example function with a quadratic minimum

=1,1.4
np.linspace(p, r,200)
figure(figsize=(8,5))
en(myf,1,1.4,1.e-8)

[space for results]

[]
(]
[]
30 - °
[}
[]
o
25 °
[]
(]
[]
20 °
[]
step # °
o
15 - i
[]
o
10 ®
@
® @)
54 g Ll 8
® e @
® e o
0 A [4 . 2 L J
00 105 110 115 120 125 130 135 4

p.q.r

Now let's do Homework 6 Q7 (Bezier approx to quarter-circlej) properly!

def bezier(P,t): # columns of P are PO, P1, P2, P3
PO,P1,P2,P3 = P.

1-t

X S**3*PO[O] + 3*s**2*t*P1[0] + 3*s*t**2*P2[0] + t**3*P3[0]

y S**3*PO[1] + 3*s**2*t*P1[1] + 3*s*t**2*P2[1] + t**3*P3[1]

return X,y

Cc
T
S

def deviation_from_circle(q):
P = np.array([[1,1,q,0],
[0,9,1,1]]) # columns of P are PO, P1, P2, P3
t = np.linspace(0,1,500)
X,y = bezier(P,t)
return np.abs(x**2 + y**2 - 1).max() # maximum deviation from circle

golden(deviation_from_circle,0,1,2e-8)

[
35 - ;
30 - 3
[
25 | i
stepzﬂ i 8
@
15 - ‘
10 - .
e
R e
4 e .
041 @& @ 0]
0.0 0.2 0.4 0.6 0.8 1.0
p.a,r

(0.5519149498173181, 0.5519149696417678)
N ———

Faster methods for smoother [

So far, we've depended only on f being unimodal. No smoothness (or even continuity) required.
We can do better (faster) if f has some smoothness.

For example, recall that Newton's method converges quadratically to a root of g if g € C 2.

Now we are seeking a minimizer of f. If f € C? then g = f’ € C? and a local minimizer of f is
a root of g to which Newton will converge quadratically:
k
(e _ o _ L&)
frx®y

Another idea that doesn't depend on quite so much smoothness is successive quadratic
interpolation.

Next class, we'll explore optimization with respect to a vector variable (n > 1),
(which is a huge area).

