(a)
$$p(x) = 3 \cdot (x-2)(x-3)(x-6) + 3 \cdot (x-0)(x-3)(x-6)$$

 $(0-2)(0-3)(0-6) + (2-0)(2-3)(2-6)$

$$+ 5 \cdot (x-0)(x-2)(x-6) + 4 \cdot (x-0)(x-2)(x-3)$$

$$\overline{(3-0)(3-2)(3-6)} + (6-0)(6-2)(6-3)$$

(b)
$$c_0 = \frac{3}{-36} = \frac{-1}{12}$$
, $c_1 = \frac{3}{2 \cdot -1 \cdot -4} = \frac{3}{8}$

$$c_1 = \frac{5}{3 \cdot 1 \cdot 3} = -\frac{5}{9}$$
, $c_3 = \frac{4}{6 \cdot 4 \cdot 3} = \frac{1}{18}$

$$P(x) = \frac{1}{12}(x-2)(x-3)(x-6) + \frac{3}{8}(x)(x-3)(x-6) + \frac{1}{18}(x)(x-2)(x-3)$$

(c)
$$p(x) = \left(-\frac{x^3}{12} + \frac{11}{12}x^2 - 3x + 3\right) + \left(\frac{3}{8}x^3 - \frac{27}{8}x^2 + \frac{27}{4}x\right)$$

 $+ \left(-\frac{5}{9}x^3 + \frac{40}{9}x^2 - \frac{20}{3}x\right) + \left(\frac{x^3}{18} - \frac{5}{18}x^2 + \frac{x}{3}\right)$

$$= -\frac{5}{24} \times^3 + \frac{41}{24} \times^2 - \frac{31}{12} \times + 3$$

Question 1d and e

Here is the code from class on Day 13, which uses the monomial basis:

```
1 x = np.array([2, 8, 54, 15]) # data points to interpolate
y = \text{np.array}([3,7,-1,2])
3 \text{ nplus1} = \text{len}(x)
5 # construct the matrix A
6 A = np.empty((nplus1,nplus1))
7
  for k in range(nplus1):
8
       A[:,k] = x**k
9
  print(A)
10
11 # find the coeffs
12 c = np.linalg.solve(A,y)
13 print('c =',c)
15 # construct p
16 xx = np.linspace( x.min(), x.max(), 500 ) # evaluation points
17 p = np.zeros_like(xx)
18 for k in range(nplus1):
       p \leftarrow c[k]*xx**k
19
20
21 plt.plot(x,y,'ro') # dots for the data points
22 plt.plot(xx,p);
23 plt.title('The interpolant to the \{x_j,y_j\} built with the monomials \{1,x,x^2,x^3\}');
```

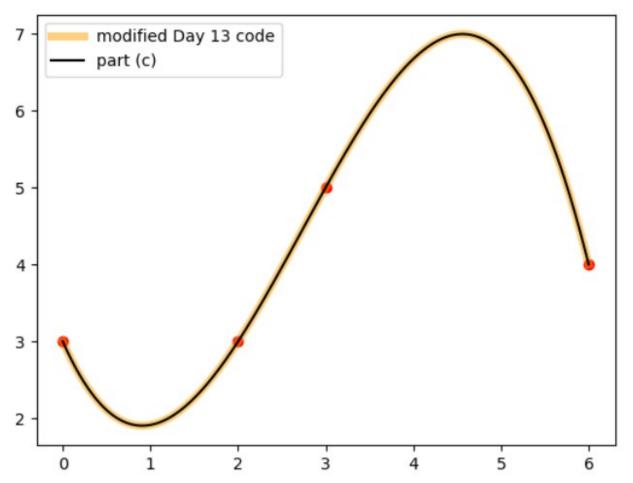
Here is the modification of the above to use the Newton basis:

```
1 import numpy as np
2 import matplotlib.pyplot as plt
4 data = np.array([(0,3), (2,3), (3,5), (6,4)])
6 | x = data[:,0] # data points to interpolate
7 y = data[:,1]
8 nplus1 = len(x)
9 n = nplus1 - 1
11 # construct the matrix A corresponding to the Newton basis
12 # Columns are the basis functions evaluated at the nodes, x
13 A = np.empty((nplus1,nplus1))
14 A[:,0] = 1
                                    different matrix
15 for k in range(n):
     A[:,k+1] = A[:,k]*(x-x[k])
17 print('A:'); print(A)
19 # find the coeffs
20 c = np.linalg.solve(A,y)
21 print('c:'); print(c)
22
23 # construct p
24 xx = np.linspace( x.min(), x.max(), 500 ) # evaluation points
25 p = np.zeros_like(xx)
26 phi = np.ones_like(xx)

    different basis functions

27 for k in range(nplus1):
       p \leftarrow c[k]*phi
28
29
       phi *= (xx-x[k])
30
31 plt.plot(x,y,'ro') # dots for the data points
32 plt.plot(xx,p,'orange',lw=5,alpha=0.5,label='modified Day 13 code');
34 # finally add the graph of the result of the hand-calculation in part (c):
35 plt.plot(xx,-5/24*xx**3 + 41/24*xx**2 - 31/12*xx + 3,'k',label='part (c)')
                                                                                      from part (c)
36 plt.legend();
```

```
A:
[[ 1. 0. -0. 0.]
  [ 1. 2. 0. -0.]
  [ 1. 3. 3. 0.]
  [ 1. 6. 24. 72.]]
c:
[ 3.00000000e+00 2.96059473e-16 6.66666667e-01 -2.08333333e-01]
```



We visually confirm that the two ways of computing the interpolant give the same result.

THEOREM 4.6

If x_0, x_1, \ldots, x_n are n+1 distinct points in [a,b] and $f \in C^{n+1}[a,b]$, then for each $x \in [a,b]$, there exists a number $\xi = \xi(x) \in (a,b)$ such that

$$f(x) = p(x) + \frac{f^{(n+1)}(\xi(x)) \prod_{j=0}^{n} (x - x_j)}{(n+1)!}$$
(4.11)

Proof:

Case 1 Suppose that $x = x_k$ for some $k, 0 \le k \le n$. Then, $f(x_k) = p(x_k)$ and (4.11) is satisfied for $\xi(x_k)$ arbitrary on (a, b).

First dispensing with the easy cases when x happens to be a node of the interpolation. There by definition p(x)=f(x) and the product in 4.11 has a zero factor giving agreement.

Suppose that $x \neq x_k$ for k = 0, 1, 2, ...n. Define as a function of t,

$$g(t) = f(t) - p(t) - (f(x) - p(x)) \prod_{i=0}^{n} \frac{t - x_i}{x - x_i}.$$

Off the bat I have no idea where this is going, but we can certainly define this function, g. Let's keep in mind that we have fixed x in the definition of g. For a different x, we have a different q.

Since $f \in C^{n+1}[a,b]$, $p \in C^{\infty}[a,b]$, and $x \neq x_i$ for any i, it follows that $q \in C^{n+1}[a,b].$

because a sum or product or quotient of C^m functions is a C^m function if there's no zero in the denominator - which there isn't because we're in Case 2.

For
$$t = x_k$$
,
$$g(x_k) = f(x_k) - p(x_k) - (f(x) - p(x)) \prod_{i=0}^{n} \frac{x_k - x_i}{x - x_i} = 0 - 0 = 0.$$

Again, not sure where we're going with this, but this is true because f(x | k) = p(x | k)and for any k there is a zero factor in the product.

Moreover,

$$g(x) = f(x) - p(x) - (f(x) - p(x)) \prod_{i=0}^{n} \frac{x - x_i}{x - x_i} = 0.$$

because all the factors in the product are 1.

Thus, $g \in C^{n+1}[a,b]$ vanishes at the (n+2) points x_0, x_1, \ldots, x_n, x . If $g(x_0) =$ 0 and $g(x_1) = 0$, there is an x_0^* , $x_0 < x_0^* < x_1$, such that $g'(x_0^*) = 0$. (This is

by Rolle's theorem because g is in C^1[a,b]. Similarly there's an x1* in (x1,x2) such that g'(x1*)=0, etc., and we have (n+1) points where g' vanishes. Recursively, we are guaranteed g" is zero at at least n points, g" ant at least n-1 points, and finally $g^{(n+1)}$ is zero at at least (n+2)-(n+1)=1 point in (a,b) - call it $\varepsilon=\varepsilon(x)$.

Evaluating
$$g^{(n+1)}(t)$$
 at ξ gives
$$0 = g^{(n+1)}(\xi) = f^{(n+1)}(\xi) - p^{(n+1)}(\xi) - [f(x) - p(x)] \left(\frac{d^{n+1}}{dt^{n+1}} \prod_{i=0}^{n} \frac{t - x_i}{x - x_i}\right)_{t=\xi},$$
(*)

just differentiating the definition of g(n+1) times and evaluating at x.

so
$$0 = f^{(n+1)}(\xi) - (f(x) - p(x)) \frac{(n+1)!}{\prod_{i=0}^{n} (x - x_i)}.$$
 (**)

(**) follows from (*) because

i. the (n+1)th derivative of a degree-n polynomial such as p is zero, and ii. the denominators of the factors in the products can be brought outside the differentiation, and the (n+1)th derivative with respect to t of $(t-x_0)(t-x_1)\dots(t-x_n)$

is (n+1)!

Therefore,

$$f(x) = p(x) + \frac{f^{(n+1)}(\xi(x)) \prod_{i=0}^{n} (x - x_i)}{(n+1)!}.$$

which is our goal (4.11), by just solving (**) for f(x).

Using the Lagrange form,

$$P(x) = \frac{1}{2} (x-0)(x-1) + \frac{1}{2} (x-(-1))(x-1) + \frac{1}{2} (x-(-1))(x-0)$$

$$= \frac{1}{2} (x-0)(x-1) + \frac{1}{2} (x-(-1))(x-1) + \frac{1}{2} (x-(-1))(x-0)$$

$$= \frac{1}{2} (x-0)(x-1) + \frac{1}{2} (x-(-1))(x-1) + \frac{1}{2} (x-(-1))(x-0)$$

$$= \frac{1}{2} (x-0)(x-1) + \frac{1}{2} (x-(-1))(x-1) + \frac{1}{2} (x-(-1))(x-0)$$

$$= \frac{1}{2} (x-0)(x-1) + \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1)$$

$$= \frac{1}{2} (x-1) + \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1)$$

$$= \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1)$$

$$= \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1)$$

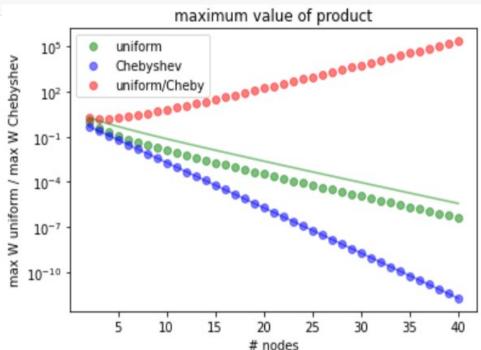
$$= \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1)$$

$$= \frac{1}{2} (x-1)(x-1) + \frac{1}{2} (x-1)(x-1) +$$

```
import numpy as np
   import matplotlib.pyplot as plt
   x = np.linspace(-1., 1., 2000)
   print( ' n
                  maxu
                           maxc
                                 maxu/maxc')
   ulabel,clabel,rlabel = 'uniform','Chebyshev','uniform/Cheby'
   for n in range(2,41):
10
       Xu = np.linspace(-1.,1.,n)
                                                   # uniformly spaced nodes
       Xc = np.cos((2*np.arange(n)+1)/n*np.pi/2) # Chebyshev nodes
14
       # evaluate the products for both node choices
15
16
       Pu = np.ones_like(x)
       Pc = np.ones like(x)
17
       for k in range(n):
18
19
            Pu *= x-Xu[k]
            Pc *= x-Xc[k]
20
21
22
23
24
25
       maxu = np.abs(Pu).max()
       maxc = np.abs(Pc).max()
       print( '{:2d} {:8.1e} {:8.1e} '.format( n, maxu, maxc, maxu/maxc ) ) #print abs(Pc2(x)).max(), 2.**-(n-1)
26
27
       plt.semilogy(n,maxu,'go',alpha=0.5,label=ulabel)
       plt.semilogy(n,maxc,'bo',alpha=0.5,label=clabel)
28
       plt.semilogy(n,maxu/maxc,'ro',alpha=0.5,label=rlabel)
29
       ulabel,clabel,rlabel = None,None,None # so we only have one entry for each in legend
30
  nvalues = np.arange(2,41)
   plt.semilogy(nvalues,2.**(-(nvalues-1)),'b',alpha=0.5)
                                                                # we've read that it's 2^-(n-1) for Chebyshev
   guess = [np.prod([i/n for i in range(1,n+1)])*2**(n+1)/n for n in range(2,41)] # a bound for functional form for uniform nodes
   plt.semilogy(nvalues,guess,'g',alpha=0.5)
   plt.xlabel('# nodes')
   plt.ylabel('max W uniform / max W Chebyshev')
   plt.title('maximum value of product')
   plt.legend();
                                                                            maximum value of product
```

maxu maxc maxu/maxc 1.0e+00 5.0e-01 2.0e+00 3.8e-01 1.5e+00 2.5e-01 2.0e-01 1.3e-01 1.6e + 001.1e-01 6.3e-02 1.8e+00 6 6.9e-02 3.1e-02 2.2e+00 4.4e-02 1.6e-02 2.8e+00 2.8e-02 7.8e-03 3.6e+00 4.8e+00 1.9e-02 9 3.9e-03 10 1.3e-02 2.0e-03 6.5e+00 11 8.5e-03 9.8e-04 8.7e+00 4.9e-04 1.2e+01 12 5.8e-03 13 4.0e-03 2.4e-04 1.6e+01 14 2.8e-03 1.2e-04 2.3e + 016.1e-05 3.2e+01 15 1.9e-03 16 1.3e-03 3.1e-05 4.4e+01 17 9.4e-04 1.5e-05 6.2e + 0118 6.6e-04 7.6e-06 8.7e+01 19 4.7e-04 3.8e-06 1.2e + 0220 3.3e-04 1.9e-06 1.7e+02 21 2.3e-04 9.5e-07 2.4e+02 22 1.7e-04 4.8e-07 3.5e + 0223 1.2e-04 2.4e-07 4.9e+02 24 8.4e-05 1.2e-07 7.0e+0225 6.0e-05 6.0e-08 1.0e+03 26 4.3e-05 3.0e-08 1.4e+03 2.0e+03 27 3.1e-05 1.5e-08 28 2.9e+03 2.2e-05 7.5e-09 29 1.6e-05 3.7e-09 4.2e+03 30 1.1e-05 1.9e-09 6.0e+03 31 8.1e-06 9.3e-10 8.7e+03 32 5.8e-06 4.7e-10 1.2e + 0433 4.2e-06 2.3e-10 1.8e + 041.2e-10 34 3.0e-06 2.6e+04 35 3.7e+04 2.2e-06 5.8e-11 36 1.6e-06 2.9e-11 5.3e+04 37 1.1e-06 1.5e-11 7.7e + 047.3e-12 38 8.1e-07 1.1e + 0539 5.8e-07 3.6e-12 1.6e + 05

4.2e-07 1.8e-12 2.3e+05



From the graphs, it appears that the inf norm of the product goes to zero exponentially with n for both uniform and Chebyshev nodes, but faster for Chebyshev nodes, so that the latter are exponentially better than uniform nodes. A straightforwardly obtained bound for uniform nodes is shown as the green curve.

5

5(a)

Answers to this were extraordinarily more complicated than what I had in mind. Here's all I meant: a quadratic function realizes the bound of Theorem 4.13 in that the maximum deviation exactly equals the given bound with h = width of subinterval.

```
from resources306 import *
x,a,b,c,p,q = sp.symbols('x,a,b,c,p,q',real=True)
f = a*x**2 + b*x + c
l = (q-x)/(q-p)*f.subs(\{x:p\}) + (x-p)/(q-p)*f.subs(\{x:q\}) \# linear interpolant with nodes at x = p,q
dev = l - f
ddev = sp.diff(dev,x)
xmaxdev = sp.solve(ddev,x)[0]
print('Location of extreme deviation:')
display(xmaxdev)
maxabsdev = sp.Abs(sp.factor(sp.simplify(dev.subs({x:xmaxdev})))))
print('abs extreme deviation:')
display(maxabsdev)
D2f = sp.diff(f,x,x)
print('f'':')
display(D2f) # it's constant: it's its own max
theorem_4_13_bound = sp.simplify(sp.Abs((q-p)**2/8*D2f))
print('Theorem 4.13 bound:')
display( theorem 4 13 bound )
Location of extreme deviation:
abs extreme deviation:
(p-q)^2 |a|
                                                                                                             q
                                                                                                 (p+q)/2
2a
Theorem 4.13 bound:
\frac{(p-q)^2\;|a|}{4}
```

(b)

From part (a) we know that for a quadratic $f(x) = ax^2 + bx + c$ on an interval [p, q] of width h = q - p, the maximum absolute deviation is $ah^2/4$. Note that this is independent of both b and c.

On the other hand, f'(x) = 2ax + b, a linear function, so its extremes on [p,q] are at the ends, p and q. That is $||Df||_{\infty} = \max\{|ap+b|, |aq+b|\}$ where "max" means the larger of the two numbers.

Since b and hence $||Df||_{\infty}$ can be made arbitarily large without affecting the maximum deviation, we conclude that there are quadratics that hugely fail to attain the bound $\frac{1}{2}h||Df||_{\infty}$ of Remark 4.33 (p242).

Moreover, the following experiment strongly suggests that a sharp bound for **quadratic** f is in fact $\frac{1}{2}$ of the bound in the Remark.

```
# Empirical test of sharpness (or not) of Remark 4.33 inequality.
# compute the ratio LHS / RHS for a large number of (quadratic) examples
n = 1000000
a,b = np.random.randn(2,n)
p,q = -1,1 # choices don't actually matter
maxabsdf = np.maximum( np.abs(2*a*p + b), np.abs(2*a*q + b) )
bound = np.abs(p-q)/2*maxabsdf
maxabsdev = (p-q)**2/4*np.abs(a)
ratio = maxabsdev/bound
ratio.max()
```

0.49999922976923794

And I cannot think of any (non-quadratic) function that attains the bound in the Remark.

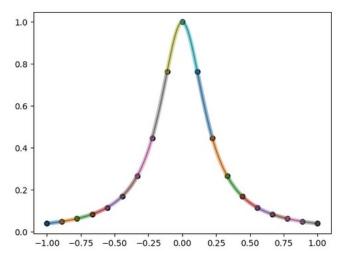
6. Cubic spline interpolation with "natural" end conditions

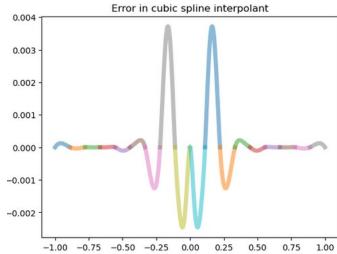
Code exactly as in class except that the data "y" is samples of Runge function, and the number of nodes is 19:

```
import numpy as np
import matplotlib.pyplot as plt
                                                                  A[row, j + 1*n + 1] = -1
                                                                  A[ row, j + 2*n + 1 ] = -2*x [j+1]
A[ row, j + 3*n + 1 ] = -3*xsq[j+1]
np.set_printoptions(linewidth=300)
b = 1
                                                                  row += 1
nplus1 = 19 # number of nodes
                                                              # continuous 2nd derivative at interior nodes
n = nplus1 - 1
                                                              for j in range(n-1):
print(n, 'subintervals')
                                                                  rhs[row] = 0
                                                                  A[ row, j + 2*n ] = 2
A[ row, j + 3*n ] = 6*x[j+1]
x = np.linspace(a,b,nplus1)
xsq = x^{**}2 + x^{2} and x^{3} for convenience xcub = x^{**}3
                                                                  A[ row, j + 2*n + 1 ] = -2
A[ row, j + 3*n + 1 ] = -6*x[j+1]
def runge(x): return 1/(1+25*x**2) # Runge function
                                                                  row += 1
y = runge(x)
# we have n subintervals, and on each a 4-dof cubic # two more conditions
function
                                                              # example: second derivative zero at ends
A = np.zeros((4*n, 4*n))
                                                              j = 0
                                                             rhs[row] = 0
                                                             A[ row, j + 2*n ] = 2
A[ row, j + 3*n ] = 6*x[j]
for letter in 'abcd':
    for j in range(n):
        print('\t'+letter+str(j),end='')
                                                             row += 1
rhs = np.zeros(4*n)
row = 0
                                                             j = n-1
                                                             rhs[row] = 0
                                                             A[ row, j + 2*n ] = 2
A[ row, j + 3*n ] = 6*x[j+1]
# left endpoint interpolation
for j in range(n):
    rhs[ row ] = y[j]
A[ row, j ] = 1
A[ row, j + 1*n ] = x[j]
                                                             row += 1
    A[ row, j + 2*n] = xsq[j]
A[ row, j + 3*n] = xcub[j]
                                                             abcd = np.linalg.solve(A,rhs)
                                                             print()
     row += 1
                                                             print(abcd)
                                                             def plot(x,y,abcd):
# right endpoint interpolation
                                                                  #plt.figure(figsize=(10,1))
                                                                  #plt.plot(x,y,'yo',markersize=30,clip_on=False)
plt.plot(x,y,'ko',clip_on=False)
for j in range(n):
     rhs[ row ] = y[j+1]
    A[ row, j ] = 1
A[ row, j + 1*n ] = x[j+1]
                                                                  nplus1 = len(x)
                                                                  n = nplus1 - 1
     A[row, j + 2*n] = xsq[j+1]
                                                                  for j in range(n):
     A[row, j + 3*n] = xcub[j+1]
                                                                       xx = np.linspace(x[j], x[j+1], 100)
                                                                       a,b,c,d = abcd[[j,j+n,j+2*n,j+3*n]]
plt.plot(xx, a + b*xx + c*xx**2 +
     row += 1
                                                            d*xx**3, lw=5, alpha=0.5)
# continuous derivative at interior nodes
                                                                       plt.plot(xx,runge(xx),'k',alpha=0.4)
for j in range(n-1):
     rhs[ row ] = 0
                                                                  plt.plot(x,y,'wo',markersize=0.2,clip_on=False)
     A[row, j + 1*n] = 1
                                                             #plt.figure(figsize=(10,2))
    A[ row, j + 2*n ] = 2*x [j+1]
A[ row, j + 3*n ] = 3*xsq[j+1]
                                                             plot(x,y,abcd)
                                                             plt.savefig('temp.svg')
```

Below left is the interpolant, and on the right is the deviation from the Runge function, where we can see the maximum deviation is less than 0.004. From the illustrations in the question, we can see this is even better than the global polynomial interpolant using Chebyshev nodes, which has a maximum error more than 4 times greater.

If we also care about error in the derivative, the cubic spline is better in that regard too. (Chebyshev error plot has steeper slopes.)





Approximate quarter circle with a Bezier cubic curve

```
1 from nsm import *
 3
   def bezier(P,t): # columns of P are PO, P1, P2, P3
        P0,P1,P2,P3 = P.T
        s = 1 - t
        x = s**3*P0[0] + 3*s**2*t*P1[0] + 3*s*t**2*P2[0] + t**3*P3[0]
        y = s**3*P0[1] + 3*s**2*t*P1[1] + 3*s*t**2*P2[1] + t**3*P3[1]
10 def deviation_from_circle(x,y):
        dev = x^{**2} + y^{**2} - 1
        return dev.min(), dev.max()
13
14
   def doit(qmin,qmax,nq,draw_control_points=True):
15
        fig, (ax0, ax1) = plt.subplots(1, 2, gridspec_kw={'width_ratios': [5, 2]})
        for q in np.linspace(qmin,qmax,nq):
16
            P = np.array([[1,1,q,0]]
18
                            [0,q,1,1]]) # columns of P are PO, P1, P2, P3
19
            ax0.set_aspect(1)
t = np.linspace(0,1,500)
20
21
            if draw_control_points:
                 ax0.plot(P[0,:],P[1,:],'go',alpha=0.75)
ax0.plot(P[0,:],P[1,:],'m-',alpha=0.5)
22
23
24
            x,y = bezier(P,t)
25
            ax0.plot( x, y, 'b-')
            ax0.plot(-x, y, 'b-')
ax0.plot(-x,-y, 'b-')
26
27
28
            ax0.plot( x,-y,'b-')
29
30
            ax1.plot(t,x**2+y**2,'-',label='{:6.4f}'.format(q))
            ax1.set_title('radius'); ax1.set_xlabel('t')
            print('q: {:6.4f} deviation range {:9.5f} {:9.5f}'.format(q,*deviation_from_circle(x,y)))
33
        ax1.legend();
34
        fig.tight layout()
35
```

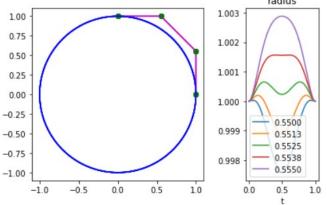
My criterion

My goal is to minimize the maximum deviation from the circle, $\max_{t \in [0,1]} |x(t)^2 + y(t)^2 - 1|$.

For each round of the process, I'm going to try 5 values of the free parameter, and zero in on the optimal value.

```
doit(0,1,5)
q: 0.0000
            deviation range -0.50000
                                              0.00000
q: 0.2500
            deviation range
                                -0.29492
                                              0.00000
q: 0.5000
            deviation range -0.05469
                                              0.00000
q: 0.7500
            deviation range
                                 0.00000
                                              0.22070
q: 1.0000
            deviation range
                                  0.00000
                                              0.53125
                                               radius
  1.00
                                                  0.0000
                                                  0.2500
  0.75
                                        14
                                                  0.5000
                                                  0.7500
  0.50
                                                  1.0000
                                        12
  0.25
  0.00
                                        1.0
 -0.25
                                        0.8
 -0.50
 -0.75
                                        0.6
-1.00
      -1.0
             -0.5
                    0.0
                                                0.5
```

1 doit(.4,.6,5) q: 0.4000 deviation range -0.15500 0.00000 q: 0.4500 deviation range -0.10555 0.00000 0.00000 -0.05469 q: 0.5000 deviation range q: 0.5500 deviation range -0.00242 0.00003 q: 0.6000 deviation range 0.00000 0.05125 radius 1.00 1.05 0.75 0.50 1.00 0.25 0.95 0.00 -0.250.4000 0.90 -0.500.4500 0.5000 -0.750.5500 0.85 0.6000 -1.00-1.0-0.5 0.0 0.5 1.0 0.0 0.5 doit(.55,.555,5) q: 0.5500 deviation range -0.00242 0.00003 deviation range 0.00020 q: 0.5513 -0.00110 0.00000 0.00065 q: 0.5525 deviation range q: 0.5538 0.00000 0.00157 deviation range deviation range 0.00000 0.00288 q: 0.5550 radius



Could be improved a little bit further, but I'll stop here.

The deviation from a perfect circle when "q"=0.552 is less than 0.025%. (r = 1+eps, $r^2 - 1 \sim 2eps$.)

1 doit(.551,.553,5) q: 0.5510 deviation range -0.00136 0.00014 q: 0.5515 deviation range -0.00083 0.00026 q: 0.5520 deviation range -0.00030 0.00042 q: 0.5525 deviation range 0.00000 0.00065 q: 0.5530 deviation range 0.00000 0.00095 radius 1.0010 1.00 0.75 1.0005 0.50 0.25 1.0000 0.00 0.9995 -0.250.5510 -0.500.5515 0.5520 0.9990 -0.750.5525 0.5530 -1.001.0 -1.0-0.5 0.0 0.5 0.0 0.5 1.0

q: 0.5520 deviation range -0.00030 0.00042

1 doit(.552,.552,1,False)

