




We visually confirm that the two ways of computing the interpolant give the same result.
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From the graphs, it appears that the inf norm of the product
goes to zero exponentially with n for both uniform and Chebyshev nodes, but 
faster for Chebyshev nodes, so that the latter are exponentially better than 
uniform nodes. A straightforwardly obtained bound for uniform nodes is 
shown as the green curve.
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6.  Cubic spline interpolation with "natural" end conditions

Code exactly as in class except that the data “y” is samples of Runge function, and the number of nodes is 19:

import numpy as np
import matplotlib.pyplot as plt
np.set_printoptions(linewidth=300)

a = -1
b = 1
nplus1 = 19  # number of nodes

n = nplus1 - 1
print(n,'subintervals')

x = np.linspace(a,b,nplus1)  
xsq  = x**2  # x^2 and x^3 for convenience
xcub = x**3

def runge(x): return 1/(1+25*x**2) # Runge function
y = runge(x) 

# we have n subintervals, and on each a 4-dof cubic 
function

A = np.zeros( (4*n,4*n) )

for letter in 'abcd':
    for j in range(n):
        print('\t'+letter+str(j),end='')
rhs = np.zeros( 4*n )
row = 0

# left endpoint interpolation
for j in range(n):
    rhs[ row ] = y[j]
    A[ row, j ]     = 1
    A[ row, j + 1*n ] = x[j]
    A[ row, j + 2*n ] = xsq[j]
    A[ row, j + 3*n ] = xcub[j]
    row += 1
    
# right endpoint interpolation
for j in range(n):
    rhs[ row ] = y[j+1]
    A[ row, j       ] = 1
    A[ row, j + 1*n ] = x[j+1]
    A[ row, j + 2*n ] = xsq[j+1]
    A[ row, j + 3*n ] = xcub[j+1]
    row += 1

# continuous derivative at interior nodes
for j in range(n-1):
    rhs[ row ] = 0
    A[ row, j + 1*n ] = 1
    A[ row, j + 2*n ] = 2*x [j+1]
    A[ row, j + 3*n ] = 3*xsq[j+1]

    
    A[ row, j + 1*n + 1 ] = -1
    A[ row, j + 2*n + 1 ] = -2*x [j+1]
    A[ row, j + 3*n + 1 ] = -3*xsq[j+1]
    
    row += 1
    
# continuous 2nd derivative at interior nodes
for j in range(n-1):
    rhs[ row ] = 0
    A[ row, j + 2*n ] = 2
    A[ row, j + 3*n ] = 6*x[j+1]
    
    A[ row, j + 2*n + 1 ] = -2
    A[ row, j + 3*n + 1 ] = -6*x[j+1]
    
    row += 1
    
# two more conditions
# example: second derivative zero at ends

j = 0
rhs[row] = 0
A[ row, j + 2*n ] = 2
A[ row, j + 3*n ] = 6*x[j]
row += 1

j = n-1
rhs[row] = 0
A[ row, j + 2*n ] = 2
A[ row, j + 3*n ] = 6*x[j+1]
row += 1

abcd = np.linalg.solve(A,rhs)
print()
print(abcd)
def plot(x,y,abcd):
    #plt.figure(figsize=(10,1))
    #plt.plot(x,y,'yo',markersize=30,clip_on=False)
    plt.plot(x,y,'ko',clip_on=False)
    nplus1 = len(x)
    n = nplus1 - 1
    for j in range(n):
        xx = np.linspace(x[j],x[j+1],100)
        a,b,c,d = abcd[[j,j+n,j+2*n,j+3*n]]
        plt.plot(xx, a + b*xx + c*xx**2 + 
d*xx**3,lw=5,alpha=0.5)
        plt.plot(xx,runge(xx),'k',alpha=0.4)
    plt.plot(x,y,'wo',markersize=0.2,clip_on=False)
#plt.figure(figsize=(10,2))
plot(x,y,abcd)
plt.savefig('temp.svg')



Below left is the interpolant, and on the right is the deviation from the Runge function, where we can see the 
maximum deviation is less than 0.004. From the illustrations in the question, we can see this is even better than 
the global polynomial interpolant using Chebyshev nodes, which has a maximum error more than 4 times 
greater.

If we also care about error in the derivative, the cubic spline is better in that regard too. (Chebyshev error plot 
has steeper slopes.)
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Could be improved a little bit further, but I'll stop 
here. 
The deviation from a perfect circle when “q”=0.552
is less than 0.025%.  (r = 1+eps, r^2 - 1 ~ 2eps.)


